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MICROLOCAL PROPERTY OF PSEUDODIFFERENTIAL
OPERATORS IN CASE OF WAVE FRONT
SETS DEFINED BY WAVELET TRANSFORMS

SHINYA MORITOH (Z5EE #hik)

Abstract. We define a class of wavelet transforms as a continuous and microlocal version
of the Littlewood-Paley decompositions. Hormander’s wave front sets may be character-
ized in terms of our wavelet transforms. We prove microlocal property of pseudodifferential
operators in case of our wave front sets.

INTRODUCTION

We define a class of wavelet transforms as a continuous and micro-local version of the
Littlewood-Paley decompositions. Hormander’s wave front sets may be characterized in
terms of our wavelet transforms. We remark that the components of our decompositions
are not linearly independent but can be treated as if they were. |
This paper consists of two parts. The former part is the comparison between the wave
front sets defined by our wavelet transforms and Hoérmander’s wave front sets. The
latter part is to show microlocal property of pseudodifferential operators in case of our

wave front sets. First, we define our wavelet transforms as follows:

Definition 1. Suppose that the function ¥(z) (called wavelet) has the following prop-
erties: ¥(z) € S(R?), $(¢) € C§°(R™) and P(€) 2 0. Let Q=suppi(£), (0,-,0,1) is
the central axis of {2, and r¢ is any rotation which sends ¢/|¢| to (0,-,0,1). When
n=1,Q C (0,00) and when n 2 2, Q is connected, does not contain the origin 0 and
Y(z) = Y(rz) for any r € SO(n) satisfying r(0,--,0,1) = (0,--,0,1). Then our wavelet
transform is defined as follows:

for f(t) € §'(R"), (z,£) € R?™,

Jo FOIEP 2 (E(t — ), ifn=1,
Jan FOIE2P([E]re( — ))dt, ifn22.

Wy f(z,€) = {
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Remark 1. Wy f(z,§) is rewritten as follows:

F(r) - €3 d(LE7) - eim2dr.
RN

From this, the meaning of our wavelet transforms is clear.

Remark 2. Our wavelet transforms in R™ are the reduced versions of those defined

by R.Murenzi(See [3]).

Remark 3. The domain of a wavelet transformation is usually the Lo-space(See [1]),

but can be extended to S'(R"),that is, the dual space of S(R™).
Now, we define our wave front set WFy(f)(C R7 x Rg) of f € S'(R™) as follows.
Definition 2. We say (z,£°) ¢ WFy(f) if there exists a neighbourhood U(zo) of zo

and a conic neighbourhood T'(£°) of £° such that |Wy, f(z,&)| = O(|¢|~N) as |£] tends
to oo for any N € N in U(z) x T'(¢€°).

Moreover, we define the refinement WF 15,8)( f) as follows.
Definition 3.

(20,€%) ¢ WES(f) & // Wy f(z, O)R(L + |E2) dede < oo.
U(zo)xI'(£9)

It is easy to prove that if f € L,(R"),

W Fy(f) = the closure of U WF,E;’)(f)
520

We need the following definition to state Theorem 1.

Definition 4. Let coneQ = {té|¢ € ,t > 0}. We say (zo,£°) ¢ WE if 2 ¢ proj,WF
and ¢° € R™, or z¢ € proj, WF and r(cone?) does not intersect {£ € R”;(zo,€) € WF}
for any r € SO(n) with r(conef?) including £°. That is to say, the set WF” is the
expanded set of W F' only in the frequency space.

Here, the set WF is the wave front set in the sense of L.Hormander(see [3]), and

proj. WF denotes the projection of WF onto z-space.
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Theorem 1. Let f € Ly(R"), and s 2 0. When n = 1, WFS)(f) = WFO(f).
—_— —

When n 2 2, WFS)(f) C WFC)( 7’ and WFO(f) C WFS)(f) . We have the same

inclusions between W Fy,(f) and WF(f).

The latter part of this paper is to show microlocal property of pseudodifferential

operator in case of our wave front sets. First we define the operator P, as follows:

Pyf(s)=Cy™" / / e (=p, (s, £, 8) F(t)dtdE,
where
Py(s,€,t) = e (5, ¢) / Vz,e(8)¥z,e(t)dz, p(s,€) € ST

and Cy is defined in Proposition 1. (We abbreviate the kernel of our wavelet transform

as 'l/)z’f.)

Theorem 2. We have

py(s,6,t) € S 0°(R°™\{s = t}),py(s,&,) € ST

and that py(s,€,t) converges to p(s,§) pointwisely as Q tends to (0,- - -,0,1).

Theorem 3. In case P(s,€)=2|k,gn skpr(€) € ST, we have

WFy(Pyf) C | WFy(f),
klSn

where ¥ (t) =t¥1(t). The right hand side converges to W F(f) as Q tends to (0,---,0,1).

Theorem 4. In case pi() is a polynomial with respect to ¢ in addition to the assump-

tion in Theorem 3, we have

wryPf)c |J UWFy (),

l1l<n k<1

where 1}, =P(Dy)(t*1(t)). We have the usual microlocal property as  tends to (0,- -
-, 0,1).
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1. PROOF OF THEOREM 1.

As we have already defined, the wavelet ¥(z) is essentially of two parameters, since
it is rotationally invariant around © when n 2 2. For the purpose of proving Theorem

1,we prepare three propositions. (Here, ©=(0,,1))

Proposition 1(Parseval formula and inversion formula). We have for f,g €
L2(Rn)7
[[ wasa, 6 Wagteeads = 0, [ rergiar

Here,

' TrEY2
Cy = (27)" ‘Lﬁtl‘élg—ydﬁ.

From this, we also have:

f(t) = ¢z / / Wof(2,€) - [E139([Elre(t — 2))dwde,

whenn 2 2. Whenn =1, [|re(t — z) is rep]aéed by &(t — z). For f € §',this inversion

formula must be regarded in the distribution sense.

Proposition 2(Locality). If zo does not belong to supp f,then there exists a neigh-
bourhood U(zg) of z¢ such that Wy f(z,£) is rapidly decreasing in £ with respect to
z € U(zo) uniformly.

Proposition 3(Global Sobolev property).

fEH®™) & / / Wy (2, €)1+ €)* < oo.

Proof of Proposition 1. We obey the method that I.Daubechies[1] employed to prove

in the case n = 1. We have
[ wosta, 6 st Biaede
= [ FlerEaereryeear
([ s E R e rer)e=rmdrlda
= Gy [ agter™ [ arfer)- T - bGerre (1)
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We exchange variables from 7 into

w = Iﬁl_lrf'r

If we denote the Haar measure on S™~1 by df, we have

g del dlol\ |
= el o) ) = o

Therefore,the right hand side of (1) is equal to

- dle = (—

ey [ arf)- 70 [ Srb) =y [ £(e) - s,

Proof of Proposition 2. We take n as 1, for the proof is the same in the case n 2 2.
Because there exists a neighbourhood Uj(zg) of zo such that f(¢) =0, it follows that,
when t € Uy(zo), | |

Wet(a,0) =| [ 1(0le1HFET— ot

Sl ([ lellotet - e)Pant.

- - Urfo)e. .
Because 3 belongs to S(R), there exists a neghbourhood Us(zo) & Ui(zo) satisfying
this proposition. '"
Proof of Proposition 3. It sufﬁces to prove Wheﬁ n g 2, and the proof is quite similar
to that of the Parseval formula. We have o |

[ Wt 08 +1epydade.
=(n)" [arlfo) [ IS i

Ir?

=Cny" [ arlfrr / : T+ e I ey

Here, if we use the polar coordinate representation of w = (r, ) and denote [ 1/;(7', 6)2d6
by S(r),this is equal to [ 4r.5(r)(1 + J-—L—)“’ ;
By the assumption on $(w), suppS(r) is a compact set included in (0,00). This fact
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makes [ 4S(r)(1+ l%l;_)s equivalent to (1 + |7]?)°. After all, we get a characterization
of H*(R™) by using the wavelet transform.

Now, we are prepared to state the proof of Theorem 1.

Proof of Theorem 1. It suffices to show when n 2 2. Moreover, by the fact that

W Fy(f)=the closure of (J WF‘E,“’)( f), it suffices to prove the statement for any s 2 0
820
fixed.

Step 1.
Suppose that (0,£°) does not belong to the set W¢. Let T'(¢°) be the union
of r(conef?) for all rotations r such that £° is included in r(cone(2), then there ex-
ists a function ¢(z) € C§°(R™) which is always equal to 1 near z = 0 and satisfies
Jreeo) I(6£)(€)2(1 + |€]2)°dé < oo. This follows from the definition of WY, the defini-
tion of Hérmander’s wave front set and Heine-Borel’s lemma.
What we want to say is that there exist a conic neighbourhood T'(£°) of ¢° and a

neighbourhood U(0) of 0, satisfying:

/ / Wy f (2, €)P(1 + 6) dadt < co.

U(0)xI(¢°)

Here, using the inversion formula, we divide Wy f(z, £) into two parts:
Wof(e,) =lél? [(6)(0)- FETeE— 2t ©)
+el? (@ - - Pt 3)

If we take a set U(0) € {#(z) = 1} ,then, by the argument of propotion 2, (3) is rapidly

decresing in |£| with respect to z € U(0) uniformly. Therefore, it is easy to see that
(0,&0) ¢ WF1(;)((1 — ¢)f). On the other hand, if we take I'(€°) sufficiently small, then

we obtain:

/ [ Wuene, P @+ ey dsde

U(0)xT'(¢9)

< / dt / Wo(65)(, )P + |¢) dede

Iy R

—(27)" (b 2 ﬁ 2ys.5( 76 )2
~(2n) / drl(6F)(7) / L+ P B

R? IN(D)
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If we change variables from 7 into w= l%‘r as before , w must be in . Therefore, we
can see that 7 stays in I'(¢°) because we took I'(¢°) very small. The inequality above

is followed by

dw |'r|2

sy [ anl@HEF [ SR+ D) e
T'(¢%) Q
<C / ()P + |7]2)°dr < oco.(Here, C is a constant.)
T'(¢%)

Therefore, we have that (0,£°) ¢ WF,r(,,’)(tﬁ f).

Step 2.
Suppose that (0,¢°) does not belong to the set W—Eg‘sm'p. If we take a conic neigh-
bourhood T'(£°) of £° as in Step 1., then there exists a neighbourhood U(0) of z =0

and satisfies

Wy £ (2, )1 (1 + [€]*)*dzdf < oo,
U(OXT(€)

as in Step 1. Here, using the inversion formula, we divide f into two parts:

f = fr + fre , where
£O=C5" [[ Wos@,0) el plire(e - 2)dedt,

T'(¢%)xR?

fre®)=05" [ Wat(e,€)- e1F(elrete - 2.

T'(&%)°xRr
Then,
frm=c; |

r(¢%)°

[ Wosta©)- I3 dade.
Rz

If we take a sufficiently small conic neighbourhood f‘(fo) of £°, then we obtain

1}(%7‘) = 0 for anyr € I'(¢°) and for any ¢ € I'(¢°)".

Therefore, it follows that (0,£°) ¢ WF)(fre).
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Next, we choose a function ¢(z) € C5°(R"™) satisfying the condition that suppé(z)
is- compactly supported in U(0) and that ¢(z) = 1 in some neighbourhood U;(0) of 0.
Then, we further divide fr(¢) into two parts:

fr=fre+ fra-¢

where,

fro(t) =Cy* // $(z) - Wy f(a,€) - |E1F9(|EIre(t — o))dadg,

T(¢%) xRy
frame® =C3" [[ (U= o) Wut(e,)- Ie1¥(elre(t - 2))dade.

T(eS) xRy :
Let U,(0) € {4(x) = 1}, then we can easily see that fp 1-¢(t) is C* with réspeét to
te U2(0), by Propos:tlon 2, and the exchange of order of differentiation and 1ntegrat10n
Therefore, it follows that (0,£°) ¢ WF®)(fr1_4).
Lastly, we want to show that (0,£°) ¢ WF(®)(fr 4). This is the heart of matter in
proving Theorem 1. In fact, more strongly, we can show that fr 4 globally belongs to

Sobolev space H*(R"). Its Fourier transform is given by

Fou(r) = €3 // #(z) - Wy f(z,€) - |e|"¢(|£|r>e-“dxds

T(¢°)xR2 .
If we put g(=z, E) d(z)Wy f(z,€) - (1 + €153, then it follows from the hypothesis
and from the fact that suppé(z) is included in U(0) that

lg(=, &)I*dedt < .
r'(¢°)xRrp

If we denote the partial Fourier transform of g(z,§) from x to 7 by §(7,£), we ha,;re

Frg(m)@ +|r2)3

=C';l // g(fl) f)e“"w lﬂ_—"p(l I )(1+=€||2) $d€
T(£°) xRy

=cglemt [ i) Kt
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. —_n 7 |2\ s
Here, K(1,§) is defined by |¢|™2 gb(%r)(%}a‘y)z
Because supptﬁ is a compact set not including the origin 0, there exists a constant C

such that

K (r,£)] < cmr%zz({;—'f).

Therefore, by using the result in the proof of Proposition 1( i.e. the continuous decom-
position of the unity), the integral [ |K(r,£)|*d¢ is bounded from above. (the bound is
(2m)~"CyC2.)

After all, we obtain the following inequality:

[ st irtya scgier [([ 1o ordeyar

' [ o /R it O
' [[ @ e)Pded < .

T(¢°) xRz
(Theorem 1) g.e.d.

2. PROOF OF THEOREMS 2,3 AND 4.

By using Proposition 2, we can show the first part of Theorem 2. If we note

/¢I,€(3)mdx = /W’(w)]zei(s—t)'lfl’flwdw’
we can prove the second part. The proof of Theorems 3 and 4 is based on the following

calculations:

(a) I p(s,&)=p(£), by using Proposition 2, Theorems 3 and 4 are clear.
(b) If for example p(s,§)=s, by rewriting sy, ¢(s) as {(s — z)+z}; ¢(s) and using
Proposition 2, Theorem 3 is clear.
(c) If for example p(s,€)=s, by using integration by parts and Proposition 2, The-
orem 4 is clear. ‘
Complete proof is obtained by the combination of (a),(b)and(c).
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