Gevrey singularities for nonlinear wave equations

大阪大学 加藤圭一
(OSAKA UNIVERSITY: KEICHI KATO)

1. Introduction

We consider the following semilinear wave equations,

(1) \[\square u = f(u) \quad \text{in} \quad \Omega \subset \mathbb{R}_t \times \mathbb{R}^2_x, \]

where \(u \) is a real valued function, \(\square = \partial^2/\partial t^2 - \Delta \) with \(\Delta = \sum_{j=1}^{2} \partial^2/\partial x_j^2 \), \(\Omega \) is a bounded domain which contains the origin and \(f(u) \) is a polynomial of \(u \) with \(f(0) = 0 \).

We study the interaction of Gevrey singularities for this equation. We assume that solutions that we study here are all in \(H^s(\Omega) \) with \(s > 3/2 \) where \(H^s(\Omega) \) is a Sobolev space of order \(s \) in \(\Omega \). In 1982, J. Rauch and M. Reed [4] have made an example in which three singularities produce new singularities. In 1984, J. M. Bony [2] and R. Melrose and N. Ritter [3] have had a general result for \(C^\infty \)-singularity independently. We put \(\Sigma_j = \{(t, x) \in \mathbb{R}^3; t = 4^j \cdot x\} \) (\(j = 1, 2, 3 \)) with \(\omega_j \in S^1 \). Their result for the equation (1) is as follows.

Theorem 1.1 (J. M. Bony [2], R. Melrose and N. Ritter [3]). If \(u \) is conormal with respect to \(\Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \) in \(\Omega_- = \Omega \cup \{t < 0\} \), then the solution \(u \) is \(C^\infty \) in \(K \setminus (\Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \{t^2 = |x|^2\}) \) where \(K \) is a domain of determine with respect to \(\Omega_- \).

In this talk, we shall make the Gevrey version of the above result.

Definition 1.1 (Gevrey conormal distribution). For \(s > 3/2, \sigma \leq 1 \), we call that \(u \in H^s(\Sigma, G^\sigma) \), if and only if for any compact set \(K \subset \Omega \) and for any vector fields \(V_1, \ldots, V_l \) with analytic coefficients and any integer \(l \) which are tangent to \(\Sigma \), there exist constants \(C, A > 0 \) such that

(2) \[\|V_1^{\alpha_1} \cdots V_l^{\alpha_l} u\|_{H^s(K)} \leq CA^{\|\alpha\|}(\|\alpha\|)^{\sigma} \]

for any integers \(\alpha_1, \ldots, \alpha_l \).

Theorem 1.2. Suppose that \(u \) is in \(H^s(\Omega) \) for some \(s > 5/2 \), \(u \) satisfies the equation (1) and \(u \in H^s(\Sigma_1, G^\sigma; \Omega_-) \). Then we have

(3) \[u \in H^s(\Sigma_1, G^\sigma; K), \]
where \(\Omega_- = \Omega \cap \{(t, x); t < 0\} \), \(K \) is the domain of determine with respect to \(\Omega_- \).

Theorem 1.3. Suppose that \(u \) is in \(H^s(\Omega) \) for some \(s > 5/2 \), \(u \) satisfies the equation (1) and \(u \in H^s(\Sigma_1 \cup \Sigma_2, G^{(\sigma)}; \Omega_-) \). Then we have

\[
u \in H^s(\Sigma_1 \cup \Sigma_2, G^{(\sigma)}; K),
\]

where \(\Omega_- = \Omega \cap \{(t, x); t < 0\} \), \(K \) is the domain of determine with respect to \(\Omega_- \).

Theorem 1.4 (Main result). Suppose that \(u \in H^s(\Omega) (s > 5/2) \), \(u \) satisfies the equation (1) and

\[
u \in H^s(\Sigma_1 \cup \Sigma_2 \cup \Sigma_3, G^{(\sigma)}; \Omega_-).
\]

Then \(u \) is a Gevrey class function of order \(\sigma \) in \(K \setminus \Sigma_1 \cup S_2 \cup \Sigma_3 \cup \Gamma_+ \), where \(\Gamma_+ = \{t^2 = |x|^2, t > 0\} \), \(\Omega_- = \Omega \cap \{t < 0\} \) and \(K \) is a domain of determine with respect to \(\Omega_- \).

Corollary 1.1. Suppose that \(u \in H^s(\Omega) (s > 5/2) \), \(u \) satisfies the equation (1) and

\[
u \in H^s(\Sigma_1 \cup \Sigma_2 \cup \Sigma_3, G^{(1)}; \Omega_-).
\]

Then \(u \) is real analytic in \(K \setminus \Sigma_1 \cup S_2 \cup \Sigma_3 \cup \Gamma_+ \), where \(\Gamma_+ = \{t^2 = |x|^2, t > 0\} \), \(\Omega_- = \Omega \cap \{t < 0\} \) and \(K \) is a domain of determine with respect to \(\Omega_- \).

2. Preliminaries

Let \(K \) be a relatively compact set in \(R^3 = R_t \times R_x^2 \) such that each subset \(K \cap \{(t, x); s \leq t \leq T\} \) is a domain of determine with respect to \(K \cap \{(t, x); t \leq s\} \) for \(S \leq s \leq T \). For \(m > 5/2 \) and \(f \in H^m(K) \), we put

\[
E_m(t)[f] = \|f(t)\|_{H^{m-1/2}(K(t))} + \|\partial_t f(t)\|_{H^{m-3/2}(K(t))}
\]

with \(K(s) = K \cap \{(t, x); t = s\} \).

Proposition 2.1 (Energy estimate). For \(f \in H^m(K) \), we have

\[
E_m(t_2)[f] \leq E_m(t_1)[f] + C(T) \int_{t_1}^{t_2} \|\Box f\|_{H^{m-3/2}(K(s))} \, ds
\]

for \(S \leq t_1 < t_2 \leq T \).

Proposition 2.2. For \(u, v \in H^m(K) \), we have

\[
E_m(t)[uv] \leq C(n)E_m[u]E_m[v].
\]
Let Q be an analytic vector field on K. We define a quantity $\|f(t)\|_{G^s_{A}(Q;E_m)}$ by

\begin{equation}
(10) \quad \|f(t)\|_{G^s_{A}(Q;E_m)} = \sum_{l=0}^{\infty} \frac{A^l}{l!^s} E_m(t)[P^l]
\end{equation}

and we put $\|f(t)\|_{X(Q)} = \|f\|_{G^s_{A}(Q;E_m)}$ and $\|f\|_{Y_{A}([t_1,t_2];Q)} \|f\|_{Y([t_1,t_2];Q)} = \sup_{t_1 \leq t \leq t_2} \|f(t)\|_{X(Q)}$ for abbreviation.

Proposition 2.3. For $c \in \mathbb{R}$,
\begin{equation}
(11) \quad \|f\|_{G^s_{A}(Q+C;E_m)} \leq e^{\epsilon A} \|f\|_{X(Q)}
\end{equation}

Proposition 2.4.
\[\|uv\|_{X(Q)} \leq C(n)\|u\|_{X(Q)}\|v\|_{X(Q)}\]

For Σ_1 and Σ_2, we put $\tilde{\omega}_j = (1, -\omega_j)$, $\tilde{\omega}_j^* = (1, \omega)$, $\nabla = (\partial_t, \partial_{x_1}, \partial_{x_2})$ and put
\begin{align}
X_1 &= (\tilde{\omega}_1 \times \tilde{\omega}_2) \cdot \nabla \\
X_2 &= (t - \omega_2 \cdot x)\tilde{\omega}_1^* \cdot \nabla \\
X_3 &= \tilde{\omega}_2^* \cdot \nabla \\
X_4 &= (t - \omega_1 \cdot x)\tilde{\omega}_2^* \cdot \nabla
\end{align}

Proposition 2.5. We have
\begin{align}
[X_j, X_k] &= 0 \quad \text{for \quad } 1 \leq j, k \leq 4, \\
[\Box, X_1] &= [\Box, X_3] = 0, \\
[\Box, X_2] &= [\Box, X_3] = C_1 \Box + C_2 X_1^2
\end{align}
for some C_1 and C_2.

Proposition 2.6. (1) X_1, X_2 and X_3 are all tangent to Σ_1.

(2) X_1, X_2 and X_4 are all tangent to $\Sigma_1 \cup \Sigma_2$.

Proposition 2.7. (1) X_1, X_2 and X_3 are linearly independent in Σ_1^c.

(2) X_1, X_2 and X_4 are linearly independent in $(\Sigma_1 \cup \Sigma_2)^c$.

3. LEMMAS

In this section, we prepare several lemmas which are used to prove the theorems. We put $P = t \partial_t + x \cdot \partial_x$. Let K' be a relatively compact open set in K satisfying the same condition K of the section 2. We consider the following linearized equation,
\[\begin{cases} \Box v = F(w), \\
 v = u(-\epsilon, x) \quad \partial_t v = \partial_t u \quad \text{for \quad } t = -\epsilon, \end{cases} \]
where we take ϵ is so small that $K'(-\epsilon)$ determines $K' \cap \{-\epsilon < t < T\}$. Let S denote the mapping that corresponds w to v. We put $u_0 = S[0]$ and $u_n = Su_{n-1}$. Since u_0
is a solution to the homogenous linear wave equation, there exists a constant A such that $\|u_0\|_{Y_A([-\epsilon,T];P)} < \infty$. We put $B_0 = \max(\|u_0\|_{Y([-\epsilon,T];P)}, 2\|u(t)\|_{X(P)})$.

Lemma 3.1. If u satisfies the assumption of Theorem 1.2 or 1.3 or 1.4, we have

$$ (19) \quad \|u\|_{Y([t_1,t_2];P)} \leq \|u(t_1)\|_{X(P)}, $$

for $-\epsilon \leq t_1 < t_2 \leq T$ with $t_2 - t_1 < 1/(2C(T)F(C(n))G(B_0))$.

Proof. Using Propositions 2.1, 2.3 and 2.4, we have the lemma. \square

Lemma 3.2 (the Energy estimate). If u satisfies the assumption of Theorem 1.2 or 1.3 or 1.4, we have

$$ (20) \quad \sup_{0 \leq t \leq T} \|u(t)\|_{X(P)} \leq \|\phi\|_{C^s_t}^{1}[\|\nabla;E_m\|]. $$

Proof. Using the lemma 3.1 several times, we have the lemma. \square

4. **Proof of Theorem 1.1 and 1.2**

First we prove Theorem 1.1. From Propositions 2.6 and 2.7 it suffices to show that for every compact set $K' \subset K$ there exist constants C_1 and A_1 such that

$$ (21) \quad \|X^{\alpha_1}X^{\alpha_2}X^{\alpha_3}u\|_{H^m(K')} \leq C_1A_1^{\alpha_1}|\alpha|^\sigma, $$

for all non negative integers α_1, α_2 and α_3 with $|\alpha| = \alpha_1 + \alpha_2\alpha_3$. We can prove the above by the same argument as in the proof of Lemma 3.2.

5. **Regularity in the Interior of the Cone**

Let σ be a real number greater than or equal to 1. We put $P = t\partial_t + x \cdot \partial_x$. The following lemma is a key lemma to prove Theorem 1.4.

Lemma 5.1 (Key lemma). Suppose that

$$ (22) \quad \|P^l u\|_{H^l(K)} \leq C_1A_1^l(l!)^\sigma \quad \text{for } \forall l \in N \cup \{0\} $$

and u satisfies the equation (1). Then u is a Gevrey class function of order σ in Γ_+, where $\Gamma_+ = \{(t,x) \in \mathbb{R}^2; t^2 > |x|^2, t > 0\}$.

Proof. For simplicity, we prove only the case $f(u) = u^m$. Let $B \subset \Gamma_+$ be a relatively compact ball. It suffices to show that u is a Gevrey class function of order σ in each $B \subset \Gamma_+$. We put $M = \Box^2 + P^4$.

Let $\chi(x)$ be a C^∞ function in B such that $0 < \chi \leq 1$ in B and $\chi(x) = \text{dist}(x, \partial B)$ near ∂B. We put $\psi(x) = \chi(x)^N$ and we take N sufficiently large that $\|\partial^\beta(\psi u)\|_B \leq c\|M\psi u\|_B$ for $|\beta| \leq 4$.

We show that

$$ (23) \quad \|\psi^{\beta_0}\Box^\alpha P^l u\| \leq C_2A_2^{\beta_0 + l}(l!)^\sigma $$
for some $C_2 > 0$ and $A_2 > 0$ for all $\alpha \geq 0$ and all $l \geq 0$. We show (23) by induction
with respect to α.

When $|\alpha| = 0$, (23) is nothing but the assumption (22). We assume that (23) is
valid until $|\alpha| = m$.

First we prove the case $0 \leq m \leq 3$. For $|\alpha| = m + 1$, we have

$$
||\psi^{[\alpha]} \partial^{\alpha} P^l u||_B \leq ||\partial^{[\alpha]} \psi^{[\alpha]} P^l u||_B + \|[\psi^{[\alpha]}, \partial^{\alpha}] P^l u||_B.
$$

The second term of the right hand side is estimated by

$$
\sum_{\alpha' < \alpha} C_3 ||\psi^{[\alpha']} \partial^{\alpha'} P^l u|| \leq C_4 C_2 A_2^{m+1} ((m + l)!)^\sigma
$$

if we take $A_2 \geq 2C_4$. Since $|\alpha| = m + 1 \leq 4$, the first term is estimated by

$$
||M \psi^{[\alpha]} P^l u||_B \leq ||\psi^{[\alpha]} M P^l u||_B + \|[M, \psi^{[\alpha]}] P^l u||_B.
$$

The second term of the right hand side of the above inequality can be estimated by

$$
C_5 \sum_{|\alpha'| \leq 3} ||\psi^{[\alpha']} \partial^{\alpha'} P^l u||_B \leq \frac{1}{4} C_2 A_2^{m+1} ((m + l)!)^\sigma
$$

if we take A_2 sufficiently large. The first term is estimated by

$$
||\psi^{[\alpha]} \partial^2 P^l u||_B + ||\psi^{[\alpha]} P^{l+4} u||_B.
$$

The second term of the right hand side of the above can estimated by

$$
C_6 ||P^{l+4} u||_B \leq C_6 C_2 A_2^{l+4} ((l + 4)!)^\sigma
$$

$$
\leq \frac{1}{8} C_2 A_2^{l+m+1} ((l + m + 1)!)^\sigma,
$$

if we take C_2 and A_2 sufficiently large. The first term of the right hand side of the
above is estimated by

$$
||\psi^{[\alpha]} (P + 4)^l \Box u||_B = ||\psi^{[\alpha]} (P + 4)^l (u^m)||_B
$$

$$
\leq m ||\psi^{[\alpha]} (P + 4)^l u^{2m-1}|| + \left(\frac{m}{2} \right)^2 \sum_{j=0}^2 ||\psi^{[\alpha]} (P + 4)^l u^{m-2}(\partial_j u)^2||_B.
$$

The second term of the right hand side of the above is estmated by

$$
\frac{m(m-1)}{2} \sum_{j=0}^2 \sum_{a_1 + \cdots + a_m = \alpha} \frac{\alpha!}{\alpha_1! \cdots \alpha_m!} \sum_{l_1 + \cdots + l_m = l} \frac{l!}{l_1! \cdots l_m!} ||\psi^{[\alpha]} (P + 4)^l u||_B \times
$$

$$
||\psi^{[\alpha]} P^l u||_B \cdots ||\psi^{[\alpha]} P^{l-2} u||_B \psi^{[\alpha]} P^{l-1} \partial_j u||_B ||\psi^{[\alpha]} P^{l-2} \partial_j u||_B.
$$
This can be estimated by $\frac{1}{16}C_2^{i+m+1}((l+m+1)!)^\sigma$ if we take C_2 and A_2 sufficiently large. The first term can be also estimated by $\frac{1}{16}C_2^{i+m+1}((L+m+1)!)^\sigma$.

Next we prove the case $m \geq 4$. For $|\alpha| = m-3$ and $|\beta| = 4$, we have

$$\|\psi^{m+1}\partial^{\alpha+\beta}P^lu\|_B \leq \|\partial^{\beta}\psi^{m+1}\partial^\alpha P^lu\|_B + \|[[\psi^{m+1}, \partial^\beta]\partial^\alpha P^lu]\|_B.$$

The second term of the right hand side of the above can be estimated by

$$C_7 \sum_{\beta' < \beta} \|\psi^{m-3+|\beta'|}\partial^{\beta'}P^lu\|_B \leq \|C_2^{m+i}((m+l+1)!)^\sigma \leq \frac{1}{2}C_2^{m+i}((m+l+1)!)^\sigma$$

if we take $A_2 \geq 2C_7$. Since $|\beta| = 4$, the first term is estimated by

$$\|M\psi^{m+1}\partial^\alpha P^lu\|_B \leq \|\psi^{m+1}M\partial^\alpha P^lu\|_B + \|[M, \psi^{m+1}]\partial^\alpha P^lu\|_B.$$

Using the same argument as in the case $m \leq 3$, we can estimate the right hand side of the above by $\frac{1}{4}C_2^{m+i}((m+l+1)!)^\sigma$. But we note that we do not change C_2 at each step of induction in the case $m \geq 4$ not as in the case $m \leq 3$.

6. PROOF OF MAIN RESULT

We devide $K \setminus \Sigma_1 \cup S_2 \cup \Sigma_3 \cup \Gamma_+$ into 4 parts, $\bigcup_{i=1}^{4} \mathcal{O}_i$ with

$$\mathcal{O}_1 = \{(t, x) \in \mathbb{R}^3; t - \omega_1 \cdot x > 0, t - \omega_2 \cdot x < 0, t - \omega_3 \cdot x < 0\} \cup \cdots$$

$$\mathcal{O}_2 = \{(t, x) \in \mathbb{R}^3; t - \omega_1 \cdot x > 0, t - \omega_2 \cdot x > 0, t - \omega_3 \cdot x < 0\} \cup \cdots$$

$$\mathcal{O}_3 = \{(t, x) \in \mathbb{R}^3; t - \omega_1 \cdot x > 0, t - \omega_2 \cdot x > 0, t - \omega_3 \cdot x > 0, t^2 - |x|^2 < 0\}$$

$$\mathcal{O}_4 = \{(t, x) \in \mathbb{R}^3; t - \omega_1 \cdot x > 0, t - \omega_2 \cdot x > 0, t - \omega_3 \cdot x > 0, t^2 - |x|^2 > 0\}.$$

For x in $\mathcal{O}_1 \cup \mathcal{O}_2 \cup \mathcal{O}_3$, the backward light cone Γ_x^- from x does not contain the origin. So we can prove that u is in $G^{(\sigma)}$ in this area by the same argument as in the proof of Theorems 1.2 and 1.3.

To prove that u is in $G^{(\sigma)}$ in \mathcal{O}_4, we use the operator $P = t\partial_t + x \cdot \partial_x$. Using this operator, M. Beals[1] has given another proof of the theorem 1.1 of Bony and Melrose–Ritter. Note that for all relatively compact open set $L \subset \Omega_-$, there exist constants $C, A_1 > 0$ such that

$$\|P^k u\|_{H^s(L)} \leq CA_1^k(k!)^\sigma \text{ for all } k,$$
from the assumptions of Theorem 1.2. Since $[\square, P] = 2\square$,
(40) \[\square(Pu) = P\square u + [\square, P]u = (P + 2)f(u). \]
So we have
(41) \[\square(P^k u) = (P + 2)^k f(u). \]
Using the energy inequality 3.2, we have for all relatively compact open set $L \subset K$, there exist constants $C, A > 0$ such that
(42) \[\|P^k u\|_{H^s(L)} \leq CA^k (k!)^s \quad \text{for } \forall k. \]
From Lemma 5.1, we have that u is in $G^{(\omega)}$ in \mathcal{O}_4.

REFERENCES

DEPARTMENT OF MATH., OSAKA UNIVERSITY, TOYONAKA, OSAKA 560 JAPAN

e-mail address:kei@math.sci.osaka-u.ac.jp