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Abstract. We discuss the non-integrability of non-homogeneous nonlinear lattices via the
singularity analysis of normal variational equations of Lam\’e type. It is shown that quartic
nonlinear lattices without cubic terms have no other additional quantities besides the
Hamiltonians by checking the non-resonance condition of the monodromy for the special
solutions in terms of the Jacobi elliptic function.

1. From a Nonhomogeneous Nonlinear Lattice to Lam\’e Equations

Even today, it is still difficult to investigate the dynamical origin of thermal behaviour
without resort to numerical simulations, which gives us the basis of statistical mechanics.
In this report, by using the singularity analysis, we discuss the non-integrability, one of
the most important necessary condition of ergordicity for nonlinear lattices which can
be considered as idealistic models for thermal behaviour. We consider the following one-
dimensional lattice:

$H= \frac{1}{2}\sum_{i=1}^{n}p_{i}^{2}+\frac{1}{2}n+\sum_{i=1}^{1}v(qi-1-q_{i})$ , (1)

where
$v(X)= \frac{\mu_{2}}{2}X^{2}+\frac{\mu_{4}}{4}X^{4}+\cdots+\frac{\mu_{2m}}{2m}X^{2m}$. (2)

Fermi-Pasta-Ulam(FPU) lattice [4] is a special type of the systems with the potential
function (2) as follows:

$H_{FPU}= \frac{1}{2}\sum_{i=1}^{n}p_{i}^{2}+\frac{\mu_{2}}{2}n+\sum_{i=1}1(qi-1-q_{i})^{2}+\frac{\mu_{4}}{4}\sum^{1}(qi-1-q_{i})^{4}n+i=1^{\cdot}$ (3)

If we impose the fixed boundary condition as

$q_{0}=q_{n+1}=0$ , $n=\mathrm{o}\mathrm{d}\mathrm{d}$ , (4)

it is easy to check that

$\Gamma$ : $q_{1}=C\phi(t),$ $q2=0,$ $q_{3}=-C\phi(t),$ $\cdots,$ $qn-1=0,$ $q_{n}=(-1)^{\frac{n-1}{2}c_{\phi}}(t)$ (5)
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is a special solution. Thus, the equation of $\phi(t)$ is equivalent to the following Hamiltonian
system with one degree of freedom:

$\ddot{\phi}+2\mu_{2}\phi+2\mu_{4}C^{2}\phi^{3}+\cdots+2\mu_{2m}C^{2m-22m-}\phi 1=0$ , (6)

where Hamiltonian is

$H( \phi,\dot{\phi})=\frac{1}{2}(\dot{\phi})^{2}+\mu 2\phi^{2}+\frac{\mu_{4}C^{2}}{2}\phi^{4}+\cdot\cdot,$ $+ \frac{\mu_{2m}C^{2m}-2}{m}\phi^{2m}=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{t}$ . (7)

Then the total energy $\epsilon$ is given by

$\epsilon=H=H(\phi,\dot{\phi})\frac{n+1}{2}C2=\frac{n+1}{2}C^{2}(\mu_{2}+\frac{1}{2}\mu_{4}C^{2}+\cdots\frac{1}{m}\mu 2mC2m-2)$ (8)

for the initial condition (5). In the case of the FPU lattice, we can determine $C$ as follows:

(9)

By combining (7) with (8), the underlying equation of $\phi(t)$ can be rewritten by the differ-
ential equation of $\phi(t)$ as

$\frac{1}{2}(\dot{\phi})^{2}=\gamma_{2}(1-\phi 2)+\frac{\gamma_{4}}{2}(1-\phi^{4})+\cdots+\frac{\gamma_{2m}}{m}(1-\phi^{2m})$ , (10)

where
$\gamma_{2m}(\epsilon, \{\mu 2j|j=1, \cdots, m\})\equiv\mu_{2}mC2m-2$ . (11)

In case of the case of the FPU lattices (3), the solution of this differential equation
(10) with the condition

$\gamma_{2m=4}\neq 0$ (12)

is given explicitly by the elliptic function

$\phi(t)=Cn(k;\alpha t)$ , (13)

where
$\alpha=\sqrt{2\gamma_{2}+2\gamma_{4}}$, $k=\sqrt{\frac{\gamma_{4}}{2\gamma_{2}+2\gamma_{4}}}$ , (14)

$cn(k;\alpha t)$ is the Jacobi $cn$ elliptic function, and $k$ is the modulus of the elliptic integral.
We remark that because

$\gamma_{2}+\gamma_{4}=\mu_{2}+C2\mu_{4}=\sqrt{\mu_{2}^{2}+\frac{4\epsilon}{n+1}\mu_{4}}>0$ , (15)

holds for $\mu_{4}>0,$ $\mu_{2}\geq 0$ , the modulus of the elliptic function $k$ satisfies the following
relation:

$0 \leq k\leq\frac{1}{\sqrt{2}}$ . (16)
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Thus, the special solutions of the FPU lattices for $\mu_{4}>0,\mu_{2}\geq 0$ have the two fundamental
periods in the complex time plane as follows:

$T_{1}( \epsilon,\mu)=\frac{2I\zeta(k)}{\alpha}$ , $T_{2}( \epsilon,\mu)=\frac{2\mathrm{A}’(k)+2iK’(k)}{\alpha}$ , (17)

where $K(k)$ and $K’(k)$ are the complete elliptic integrals of the first kind:

$K(k)= \int_{0}^{1}\frac{dv}{\sqrt{(1-v^{2})(1-k^{2}v^{2})}}$ , $K’(k)= \int_{0}^{1}\frac{dv}{\sqrt{(1-v^{2})(1-(1-k2)v^{2})}}$ . (18)

Poles are located at $t=\tau$ , where $\tau=\frac{2\mathrm{A}^{r}(k)}{\alpha}+i\frac{h’’(k)}{\alpha}$ (mod $T_{1},$ $T_{2}$ ) in the parallelogram
of each period cell. Let us consider the variational equations along these special solutions.
The variational equations are obtained by

$\dot{\eta j}=\dot{\xi}_{j}$

.
$=- \sum_{k=1}^{n}\frac{\partial^{2}V}{\partial q_{k}\partial q_{j}}|_{\Gamma}\xi_{k}$

$=-(\gamma_{2}+3\gamma_{4}\phi^{2}+5\gamma_{6}\phi^{4}+\cdots+(2m-1)\gamma 2m\phi^{2}m-2)(2\xi_{j}-\xi_{j-1}-\xi_{j+1})$ for $1\leq j\leq n$ ,
(19)

where $\xi_{0}=\xi_{n+1}=\eta_{0}=\eta_{n+1}=0$ and $\xi_{j}=\delta q_{j},$ $\eta_{j}=\delta p_{j}$ $(1 \leq j\leq n)$ .
Moreover, these linear variational equations in the form of the vector

$\frac{d^{2}}{dt^{2}}\xi=-(\gamma_{2}+\cdots+(2m-1)\gamma_{2m}\phi 2m-2)$

$-1-12$

$-1200$

$-1-1$

$200$ $\xi$ (20)

can be decoupled as follows. After we note that the eigenvalues of the $n\cross n$ symmetric
matrix

$G=$ (21)

are obtained as $\{4\sin^{2}(\frac{j\pi}{2(n+1)})|1\leq j\leq n\}$ by a normal orthogonal transformation $Garrow$

$OGO^{-1}$ , the variational equations (19) are rewritten in the decoupled form:

$\dot{\xi}_{j}’(t)=-4\sin^{2}(\frac{j\pi}{2(n+1)})(\gamma_{2}+3\gamma_{4}\phi^{2}+\cdots+(2m-1)\gamma 2m\phi^{22}m-)\xi_{j(t)}$
’

$(1 \leq j\leq n),$ (22)

where $\xi’=O\xi$ . Clearly, these equations are written in the form of vector Hill’s $equation[6]$

$\frac{d^{2}\xi’}{dt^{2}}+A(t)\xi’=0$ , $A(t+T)=A(t)$ , (23)

where $T=T_{1},$ $T_{2}$ . For $j= \frac{n+1}{2}$ , we have the relation

$\xi_{\frac{\prime n+1}{2}}=\sqrt{\frac{2}{n+1}}(\xi_{1}-\xi 3+\xi_{5}+\cdots+(-1)\frac{n-1}{2}\xi_{n})$ . (24)
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Thus, the corresponding variational equation

$\ddot{\xi}_{\frac{n+1}{2}}’=-2(\gamma_{2}+3\gamma 4\phi 2(+\cdots+2m-1)\gamma 2m\phi^{22}m-)\xi_{\frac{\prime n+1}{2}(t)}$ (25)

has a time-dependent integral $I(\xi,\dot{\xi}; t)\equiv I(\xi,\eta;t)$ because

$I( \xi,\eta;t)=DH\equiv(\eta\cdot\frac{\partial}{\partial p}+\xi\cdot\frac{\partial}{\partial q})H=\eta\cdot p+\xi\cdot V_{q}$

$=C\dot{\phi}(\eta_{1}-\eta_{3}+\eta \mathrm{s}+\cdots+(-1)^{\frac{n-1}{2}}\eta_{n})$ (26)
$+2(C \gamma 2\phi+C\gamma_{4}\phi^{3}+\cdots+C\gamma 2m\phi 2m-1)(\xi_{1}-\xi 3+\xi 5+\cdot\cdot, +(-1)\frac{n-1}{2}\xi n)$ ,

where

$\frac{1}{c}\frac{dI}{dt}=\dot{\phi}(\dot{\xi}_{1}.-\dot{\xi}_{3}.+\cdots+(-1)\frac{n-1}{2}\dot{\xi}.n)$

$+2 \dot{\phi}(\gamma_{2}+3\gamma 4\phi 2+\cdots+(2m-1)\gamma 2m\phi 2m-2)(\xi 1-\xi_{3}+\cdots+(-1)\frac{n-1}{2}\xi_{n})=0$ .
(27)

We call Eq. (25) the tangential variational equation. On the other hands, a $(2n-2)-$
dimensional normal variational equation$(\mathrm{N}\mathrm{v}\mathrm{E})$ is given by the equation of (22) with the
tangential variational equation (25) removed as follows:

$\dot{\eta}_{j}’=-4\sin^{2}(\frac{j\pi}{2(n+1)})(\gamma 2+3\gamma 4\phi 2+\cdots \dagger (2m-1)\gamma 2m\phi 2m-2)\xi_{j}’$ ,
(28)

$\dot{\xi}_{j}’=\eta_{j}’$ for $1 \leq j(\neq\frac{n+1}{2})\leq n$ .

In case of the FPU lattice, the normal variational equation (28) becomes the Lam\’e equation
[14]

$\frac{d^{2}y}{dt^{2}}-(E_{1}cn(2k;\alpha t)+E_{2})y=0$ , (29)

where $E_{1}=12 \frac{1}{\alpha^{2}k^{2}}\sin^{2}(\frac{j\pi}{2(n+1)})$ and $E_{2}$ are constants.

2. Non-integrability Theorem by Picard-Vessiot Theory

Morales and Sim\’o obtained the following theorem on the non-integrability based on the
application of Picard-Vessiot theory to Ziglin’s $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{S}[17,18]$ for Hamiltonian systems
with two degrees of freedom.
Theorem 1 (Morales and Sim\’o $[8],1994$) When the normal reduced variational equa-
tion is of Lam\’e type, if $A\equiv E_{1}\alpha^{2}k^{2}\neq m(m+1),$ $m\in N$ and the Lam\’e equation $\mathit{8}ati_{S}fying$

this condition on A $i_{\mathit{8}}$ not algebraically solvable ($Bri_{os}chi$-Halphen-Crawford and Baldas-
$\mathit{8}arri$ solutions), then the the initial Hamiltonian system does not have a first integral,
meromorphic in a connected neighborhood of the integral curve $\Gamma$ , which is functionally
independent together with $H$ .

In case of the present analysis, $A$ is given by the following formula:

$A=E_{1} \alpha^{2}k^{2}=12\sin^{2}(\frac{j\pi}{2(n+1)})=6(1-\cos(\frac{j\pi}{n+1}))$ . (30)

We can easily check that $\cos(\frac{j\pi}{n+1})\not\in Q$ if and only if $j \not\in\{\frac{n+1}{3}, \frac{n+1}{2}, \frac{2(n+1)}{3}\}$. When $A\not\in Q$ ,
the above condition on the algebraic solvability of the Lam\’e equation is not satisfied. Thus,
to check the algebraic solvability of the Lam\’e equations

$\frac{d^{2}\xi_{j}}{dt^{2}}-(\frac{12}{\alpha^{2}k^{2}}\sin^{2}(\frac{j\pi}{2(n+1)})Cn^{2}(k;\alpha t)+E_{2})\xi_{j}=0$ $(j \neq\frac{n+1}{2})$ , (31)
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it is sufficient to examine the following two cases:

$A=6(1- \cos(\frac{1\pi}{3}))=3$ , $A=6(1- \cos(\frac{2\pi}{3}))=9$ . (32)

It is known [2] that the condition on $A$ for the $\mathrm{B}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{i}-\mathrm{H}\mathrm{a}\mathrm{l}\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{n}- \mathrm{c}_{\mathrm{r}}\mathrm{a}\mathrm{w}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{d}$ solutions is
given by

$A=m(m+1)$ , $m+ \frac{1}{2}\in N$ , (33)

and that the condition on $A$ for the Baldassarri solutions is given by

$A=m(m+1)$ , $m+ \frac{1}{2}\in\frac{1}{3}Z\cup\frac{1}{4}Z\cup\frac{1}{5}Z\backslash Z$ . (34)

However, the following relations

$m(m+1)=3 arrow m=\frac{-1\pm\sqrt{13}}{2}\not\in Q$ , $m(m+1)=9 arrow m=\frac{-1\pm\sqrt{37}}{2}\not\in Q$ (35)

hold, which guarantee that all $n-1$ Lam\’e equations (31) do not belong to the solvable
case. In case of the systems with $n$ degrees of freedom, we have $n-1$ Lam\’e equations
which corresponds to $n-1$ normal variational equations.

Thus, we obtain the following theorem:

Theorem 2 $([12],1995)$ The $FPU$ lattice for $\mu_{4}>0,$ $\mu_{2}\geq 0$ does not have $n-1$ first
integmls, meromorphic in a connected neighbourhood of the integral curve $\Gamma$ , which are
functionally independent together with $H$ .

3. Non-integrability Theorem Induced by Non-resonance Hypothesis

The theorem on the non-integrability using Picard-Vessiot theory in Section 2 does not
depend on the total energy. In this section, it is shown that we can get stronger non-
integrability results if the non-resonance condition on the monodromy group is employed.

We can consider the monodromy matrices $g$ defined by the analytic continuation of the
solution $\zeta’(t)=(\xi_{1}’(t), \eta_{1}(\prime t),$ $\cdots,\hat{\xi}_{\frac{\prime n+1}{2}}(t),\hat{\eta}\frac{\prime n+1}{2}(t),$

$\cdots,\xi_{n}’(t),$ $\eta_{n}’(t))$ of the NVE (28) along

the periodic orbits in the phase curves $\Gamma(\epsilon, t)$ as follows:

$\zeta’(T_{1})=g1\zeta’(0)$ , $\zeta’(\tau_{2})=g2\zeta’(0)$ . (36)

The periods of (36) are $T_{1},T_{2}$ in (17), respectively. These two fundamental periods $T_{1}$ and
$T_{2}$ naturally form the parallelogram, whose associate monodromy matrices are given by
$g_{1}g_{2}g_{1}-1g_{2}(-1\equiv g_{*})$ . These monodromy matrices are naturally $\mathrm{e}\mathrm{n}\mathrm{d}_{\mathrm{o}\mathrm{W}\mathrm{e}-}\mathrm{d}\mathrm{W}\mathrm{i}1-\mathrm{l}\mathrm{t}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{e}$

symplectic
structure and the pairing properties of the eigenvalues, namely $\{\sigma_{1}, \sigma_{1} , \sigma_{2}, \sigma_{2}, \cdots, \sigma_{n}, \sigma_{n}^{-1}\}$

[1]. In practice, the explicit calculation of the eigenvalues of the monodromy matrices is
an unsuccessful business except rare cases such as Hamiltonian systems with homoge-
neous polynomial $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}[16]$, Riemann’s equation, and the Jordan-Pochhammer equa-
$tions[9,5,3]$ . This is one of the unavoidable difficulties in performing Ziglin’s analysis of
general dynamical systems as well as checking the non-resonance $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}[11]$. However, if
we restrict ourselves to the eigenvalues of the commutator $g_{*}=g_{1}g_{2}g_{1}-1-1g_{2}$ for the case of
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the FPU lattice, we can confirm that the eigenvalues of the commutator $g_{*}=g_{1}g_{2}g_{1}-1-1g_{2}$

can be computed as follows; the normal variational equation (28) is the Lam\’e equation

$\frac{d^{2}y}{dt^{2}}-(E_{1}cn^{2}(k;\alpha t)+E_{2})y=0$ , (37)

where $E_{1}$ and $E_{2}$ are constants, and the eigenvalues $\sigma$ of the commutator $g_{*}=g_{1}g_{2}g_{1}-1-1g_{2}$

are known $[7, ?]$ to be determined by the indicial equation

$\triangle^{2}-\triangle-(\alpha^{2}k2)E_{1}=0$ , $\sigma=\exp(2\pi i\triangle)$ (38)

with the singular point (pole) $\tau$ located at the center of the parallelogram as follows:

$\tau=\frac{T_{1}+T_{2}}{2}=\frac{2\mathrm{A}’(k)+i\mathrm{A}’’(k)}{\alpha}$. (39)

If we apply the indicial equation(38) to the NVE (28) of the FPU lattices, the exponents
of the eigenvalues of $g_{*}$ are given by

$\triangle^{2}-\triangle-12\frac{\gamma_{4}}{\alpha^{2}k^{2}}\sin^{2}(\frac{j\pi}{2(n+1)})=0$ . (40)

Noting
$\frac{\gamma_{4}}{\alpha^{2}k^{2}}=1$ (41)

from (14), we obtain the eigenvalues of the commutator as

$\sigma_{j}=\exp(2\pi i\frac{1\pm\sqrt{1+48\sin^{2_{\frac{j\pi}{2(n+1)}}}}}{2})$

$=-\exp(\pm\pi i\sqrt{25-24\cos(\frac{j\pi}{n+1})})$ (42)

for $1 \leq j(\neq\frac{n+1}{2})\leq n$ , because there is only one pole singularity inside the parallelo-
gram. For general nonlinear lattices with the reflection symmetry, we can assume the pole
singularity of $\phi(t)$ at $t=\tau$ inside the parallelogram in the complex time plane:

$\phi(t)=c/(t-\mathcal{T})^{\beta}$ , $\beta<0$
(43)

$\xi_{j}=C’’(t-\tau)^{\nu_{j}}$ .

With the redefinition of $t-\tau$ as $\mathrm{t}$ , and by the underlying equations of $\phi(t)$ and $\xi(t),$ (10)
and (22), the condition for $\beta$ is given by

$C’\beta(\beta-1)t^{\beta-}2=-2\gamma_{2m}(C’t^{\beta})^{2m-1}$ . (44)

Namely, we have
$\beta=\frac{-1}{m-1}$ , $(C’)^{2m-}2=- \frac{\beta(\beta-1)}{2\gamma_{2m}}$ . (45)

Then, $\nu_{j}$ is obtained from the formula

$C” \nu_{j}(\nu j-1)t^{\nu_{j}-2}=c’’4\sin^{2}(\frac{j\pi}{2(n+1)})\frac{m(2m-1)}{2(m-1)^{2}}t^{-}t^{\nu}2j$ . (46)
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Thus, we finally arrive at the indicial equation for $\nu_{j}$ as follows:

$\nu_{j}^{2}-\nu j-2\frac{m(2m-1)}{(m-1)^{2}}\sin^{2}(\frac{j\pi}{2(n+1)})=0$ . (47)

Note that the phase factor $\exp(2\pi i\nu_{j})$ is obtained by means of the analytic continuation
along the closed loop around the singular point $t^{\nu_{j}}$ . Consequently the phase factors of the
indicial equation (47) are given by

(48)

where $k\equiv 2m$ is the degree of the potential polynomial of $v(X)$ in (2). It is easy to
confirm that in the case that $k=2m=4$ , the present formula (48) recover the eigenvalues
(42) of the monodromy matrices obtained from the Jacobi elliptic function. To summarize,
we obtain the special solutions of hyper-elliptic function for the general nonlinear lattices
with the reflection symmetry and correspondingly obtain the phase factors (48) around the
singularity of the solutions in the complex time plane. Furthermore, if we restrict ourselves
to the FPU lattices, we can obtain the exact eigenvalues or the characteristic multipliers
of the monodromy matrices $g_{1}g_{2}g_{1}-1-1g_{2}$ which happens to equal the phase factors (48).

If the eigenvalues $\{\sigma_{1},\sigma_{1}^{-1..1},\cdot, \sigma n’\sigma_{n}^{-}\}$ of monodromy matrices do not satisfy the
following relation

$\sigma_{1}^{l_{1}}\sigma_{2}^{l}2\ldots\sigma_{n}^{l_{n}}=1$ (49)

for any set of integers $l_{1},$
$\cdots,$

$l_{n}$ except the trivial case $l_{1}=l_{2}=\cdots=l_{n}$ , the monodromy
matrices are called non-resonant. It is known that the existence of a non-resonant mon-
odromy matrix is a basic assumption in order to perform Ziglin’s $\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{y}_{\mathrm{S}}\mathrm{i}_{\mathrm{S}}[17]$ . Moreover,
if there are straight line solutions whose monodromy matrices are non-resonant and if
the variational equations along the straight line solutions can be diagonalized into decou-
pled variational equations by constant matrices, Ziglin’s theorem can be generalized to
Yoshida’s theorem [15] for Hamiltonian systems composed by kinetic energy terms and
potential energy terms.

Yoshida’s theorem asserts the following in terms of the monodromy matrices: Suppose
that there exists an additional complex analytic integral, and that one of the monodromy
matrices $g_{a}$ is non-resonant. Then it is necessary that one of the following two cases,
namely,
(I)

$g_{b}(\lambda^{j}g_{b}(\lambda)j)$

,
must preserve the eigendirection of $g_{a}(\lambda_{j})$ , i.e., $g_{a}(\lambda_{j})$ must commute with

(II) $g_{b}(\lambda_{j})$ must permute the eigendirection of $g_{a}(\lambda_{j})$ , i.e., $g_{b}(\lambda_{j})$ is written by

in the base of $g_{a}$ having the eigenvalues $i$ and $-j$

for some suffix $j$ , at least occurs for any other monodromy matrix $g_{b}$ represented by the
base of $g_{a}$ . By using Yoshida’s theorem and the variational analysis in the former section,
we obtain the following result:
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Theorem 3 $([13],1995)$ If the $n$ quantities $\{\sqrt{25-24cos\frac{j\pi}{n+1}}|j=1, \cdots, n\}$ are ratio-
nally independent, then the $FPUlatti_{C}e\mathit{8}(\mathit{3})$ have no analytic first integrctls besides the
Hamiltonian itself for odd $n(\geq 3),$ $\mu_{2}\geq 0,\mu_{4}>0$ and for sufficiently small energy $\epsilon(\approx 0)$ .
We remark that the algebraic condition of the rational independence of the set
$\{\sqrt{25-24\cos\frac{j\pi}{n+1}}|j=1, \cdots n\}$ comes from the non-resonance hypothesis of the commuta-
tor $g_{*}=g_{1}g_{2}g_{1}-1-1g_{2}$ . See [10] for checking the rational independency using an algebraic
number theory on the cyclotomic field $Q( \exp(\frac{\pi i}{n+1}))$ over $Q$ .

Thus, we obtain the following theorem:

Theorem 4 $([13],1995)$ The $FPU$ lattices (3) have no analytic first integmls $beside\mathit{8}$ the
Hamiltonian itself for odd $n(\geq 3),$ $\mu_{2}>0,$ $\mu_{4}>0$ and for fully small energy $\epsilon(\approx 0)$ .

(Proof of Theorem 3)
From the non-resonance hypothesis on $g_{*}$ , we can apply the Yoshida $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}[15]$ to the

FPU lattices. According to the above argument, if we prove that at least one monodromy
matrix $g_{s}\in\{g_{1},g_{2}\}$ does not have the following properties

(a) $g_{s}(\lambda_{j})$ preserves the eigendirection of $g_{*}(\lambda_{j})$

and
(b) $g_{s}(\lambda_{j})$ permutes the eigendirection of $g_{*}(\lambda_{j})$ ( $\mathrm{t}\mathrm{h}\mathrm{e}$ eigenvalues of $g_{s}(\lambda_{j})$ are $i,$ $-i$ ),

at once for any suffix $j(1\leq j(\neq n+1/2)\leq n)$ of $g_{s}(\lambda_{j})$ , then the FPU lattices [4] are
concluded to have no other analytic conserved quantities besides the Hamiltonian itself,
i.e., the assertion of the present theorem holds. When we take the limit $\epsilonarrow 0$ , the relations

$\gamma_{4}=\mu_{4}c^{2},$
$\cdots,$

$\gamma 2m=\mu_{2m}C^{2m}-2arrow 0$ , $\alphaarrow\sqrt{2\mu_{2}}$ , $karrow 0$ (50)

holds in $\mathrm{E}\mathrm{q}.(14)$ and

$T_{1} arrow\frac{1}{\sqrt{2\gamma_{2}}}\pi$ , $T_{2} arrow\frac{1}{\sqrt{2\gamma_{2}}}\pi+i\infty$ (51)

in Eq. (17). In the low-energy limit, the variational equations (28) approaches to the
following equations:

$\dot{\eta}_{j}’=-4\sin^{2}(\frac{j\pi}{2(n+1)})\mu_{2}\xi’j$
’

$\dot{\xi}_{j}’=\eta_{j}’$ for $1 \leq j(\neq\frac{n+1}{2})\leq n$ . (52)

In this limit, $g_{1}(\lambda_{j})$ tend to

$g_{1}( \lambda_{j})=[-2\sin(\frac{j\pi\cos(}{2(n+1)})\sqrt{\mu_{2}}\sin\sin(\frac{j\pi}{2(n+1)}\sqrt{2}\sin(\frac{j\pi}{2(n+,(\sqrt{2}1)})\pi))\pi)$ $\frac{1}{2\sin(\frac{J^{\pi}}{2(n+1)},\cos()\sqrt{\mu_{2}}}\sin\sqrt{2}\sin(\frac{\sqrt{2}\sin j\pi}{2(n+\mathrm{l})})((\frac{j\pi}{\pi)2(n+1)})\pi)]$ ,

(53)
and the eigenvalues of $g_{1}(\lambda_{j})$ tend to $\{\exp(i\pi(\sqrt{2}\sin(\frac{j\pi}{2(n+1)})), \exp(-i\pi(\sqrt{2}\sin(\frac{j\pi}{2(n+1)}))\}$ ;
$g_{1}(\lambda_{j})$ for any $j$ does not have the property of (b).

Now assume that $g_{2}(\lambda_{j})$ for some $j( \neq\frac{n+1}{2})$ has the property of (a). Then if $g_{1}(\lambda_{j})$ as
well as $g_{2}(\lambda_{j})$ has also the property of (a), we have

$g_{*}(\lambda_{j})=g_{1}(\lambda j)g2(\lambda_{j})g1(-1\lambda j)g_{2}-1(\lambda_{j})=id$, (54)
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where $id$ denotes the $2\cross 2$ identity matrix. This relation (54) means that $g_{1}(\lambda_{j})$ and $g_{2}(\lambda_{j})$

commute each other and clear contradicts the non-resonance hypothesis of $g_{*}$ . Consider
the other case where $g_{1}(\lambda_{j})$ has the property of (a) and $g_{2}(\lambda_{j})$ does not have the property
of (a). However, in the representation of $g_{1}(\lambda_{j})$ and $g_{2}(\lambda_{j})$ in the basis of $g_{*}(\lambda_{j})$ as follows:

$g_{1}(\lambda_{j})=$ , $g_{2}(\lambda_{j})=$ (ad–bc $=1$ ), (55)

the relation

$g_{*}( \lambda_{j})=g1(\lambda j)g_{2}(\lambda_{j})g1(-1\lambda j)g2(-1\lambda j)=[cd(\frac{-1}{\mu^{2}}-1ad\mu^{2}bC)$ $ab( \mu 12)ad-\frac{-bc}{\mu^{2}}]$ (56)

must be satisfied. Since $g_{*}(\lambda_{j})$ is assumed to have a diagonal representation as $g_{*}(\lambda_{j})=$

diag $[\sigma_{j},\sigma_{j}^{-1}]$ and from (56), we obtain

$a=0$ , $d=0$ , $bc=-1$ , (57)

when $g_{*}(\lambda_{j})\neq id;g_{2}(\lambda_{j})$ must have the property of (b).
Therefore, in the basis of $g_{*}(\lambda_{j})$ , we have

$g_{1}(\lambda_{j})=$ and $g_{2}(\lambda_{j})=$ . (58)

These relations (58) results in

$[\sigma_{j}0$ $\sigma^{\frac{0}{j}1}]=g_{*}(\lambda_{j})=g_{1}(\lambda j)g2(\lambda_{j})g1(-1\lambda j)g_{2}^{-1}(\lambda j)=g1(2\lambda_{j})$ , (59)

where $\sigma_{j}=-\exp\{\pi i\sqrt{25-24\cos\mp^{\pi_{1}}n}\}$ . The relation (59) causes again a contradiction with
the fact that the eigenvalues of $g_{1}(\lambda_{j})$ approach $\{\exp(i\pi(\sqrt{2}\sin(\frac{j\pi}{2(n+1)})), \exp(-i\pi(\sqrt{2}\sin(\frac{j\pi}{2(n+1)}))\}$ ;
as in the limit $\epsilonarrow 0$ . The precise proof is given in Ref. ([13]). We have seen that $g_{1}(\lambda_{j})$

for any $j$ has neither the property of (a) or the property of (b). Now the theorem holds.
( $\blacksquare \mathrm{E}\mathrm{n}\mathrm{d}$ of proof of Theorem 3)

4. Summary

We have investigated the non-integrability of non-homogeneous nonlinear lattices by the
different methods based on the singularity analysis of the normal variational equations
of Lam\’e type. It is shown that the non-integrability result using Picard-Vessiot theory
holds for the model with an arbitrary finite energy and non-integrability result using the
non-resonance hypothesis of the normal variational equations is much stronger than the
former non-integrability result, although the latter non-integrability result holds only in
the low energy limit.
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