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On the monotonicity of topological entropy for
bimodal real cubic maps

Yohei Komori

(MR ETP)

1 The parameter space for bimodal real cubic
maps

A real cubic maps f from the real line R to itself is called bimodal
if it has two real critical points distinct each other. This map can
be normalized by the real affine conjugation as one of the following
forms: ‘

fap(z) 23 —3a’z + b (a>0,b>0)

——x3+3a2x+b(a<0,b50)

Therefore the space P := P+ U P~

Pt := {(a,b) € R?la > 0,b >0}
P~ = {(a,b) € R?la < 0,b <0}

can be considered as the parameter space for bimodal real cubic
maps. In this paper we identify a cubic map f,, with a point (a,b) €
P and only consider a map f,; for (a,b) € P*t for the sake of
simplicity.

We decompose the parameter space Pt into two complementary
subsets with qualitatively different dynamical behavior.

Definition 1.1 We define the connectedness locus Ct and the es-
cape locus E* by

C* = {(a,b) € P*|f},(xa)(n € N)is bounded}

ET = pPt\Ct



Remark 1.1 ([M])
The shape of these subsets are in Figure 1. The boundary 0C*
consists of the parts of real algebraic curves Sy and Ss.

S = (@hePb=2a+ D 0<ash)
Sy = {(a,b)6P+|b:2a(1—-a2),—;—Sagl}

Sy consists of f,p which have the nutral fized point, on the other
hand S, consists of f, whose critical value f,p(—a) is a fixed point
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2 Monotonicity of the topological entropy on
the escape locus

Definition 2.1 For f € P*, the n-th lap number [(f™) is the num-
ber of the mazimal intervals on which f™ the n-fold coposite of f is
monotone. We define the topological entropy h(f) of f by

R(F) = lim —logI(f™).

n—oo n,

Claim 2.1 ([M-T] Lemma 12.3)

The function h on the parameter space
h: Pt - R
f = h(f)

18 conlinuous.
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Analogues to the monotonicity of the topological entropy for the
real quadratic family Q.(z) = z? 4+ c¢(c € R), Milnor conjectured
that the level set, of the above function is connected and in [D-G-

M-T] he considered this problem on the connectedness locus C* in
detail.

Our main result is about the escape locus Et.

Theorem 2.1 On the escape locus ET, the sets of cubic maps whose
topological entropy are constant are connected (in fact they are sim-
ply connected).

This result is a consequences of Claim 2.1 and the following
claims.

Claim 2.2 Topological entropy is monotone along OC™.
Claim 2.3 There exists the homeomorphism T

T . R+ X (O, 1] — E+
(s,u) — T(s,u)

such that for u € (0,1] fized, any real cubic maps in T(Ry,u) are
quast symmetric conjugate to each other and T'(s,u) goes to infinity
if s — oo and T'(s,u) goes to dCT if s — 0.

Claim 2.2 is an analoguous result to the monotonicity for the
quadratic family and because we can prove this by using the similar
methods (namely the kneading theory and combinatorial rigidity
of post critically finite rational maps), we omit the detail in this
paper. After reviewing the work of Branner and Hubbard about the
dynamical structure of the parameter space of complex cubic maps
([B] and [B-H]), we prove Claim 2.3 in the final section.

28



29

3 Review of the result of Branner and Hub-
bard

3.1 Parameter space for complex cubic maps

After complex affine cojugation, every complex cubic map f: C —
C can be written as

fap(2) = 2° —3a*2 + b (a,b € C)

We should remark that {£a} is the critical set of f, ;. Therefore we
can take C? as the parameter space P(3) of complex cubic maps.
We decompose P(3) into two complementary subsets the connectedness locus
C(3) and the escape locus E(3). The connectedness locus C(3) con-
sists of cubic maps whose filled-in Julia set K is connected and the
escape locus E(3) is the complement of C(3).

3.2 Escape rate to infinity
For f € P(3) define the function

g9r:C— Ry U{0}
by

n—00 (n

91(2) = Jim 7-log, (1/"(2))

where log_ (|z]) := maz{0, log(|z|)}.
gy is the Green function of the filled-in Julia set K; which mea-
sures the escape rate to infinity.
We set
G:P(3) - R, U{0}
by
G(f) := maz{gs(—a), gs(a)}.

Then G is continuous, C(3) = G~1(0) and for sufficiently large r > 0,

we can show that G~1(r) is homeomorphic to the three dimensional
sphere S°.



3.3 Stretching rays

The map I, : C\ D — C\ D (s € Ry) (where D is the closed disk)
given by
l(2) o= e lel’
E
is a q.c.diffeomorphism commuting with fo(2) = 2z3. Every f € P(3)
is conjugate to fp on

Us :={z € Clygs(2) > G(f)}
by the analytic isomorphism ¢ satisfying

ff—(z—)ﬂlaszaoo.
z

Let o, denote the f-invariant almost complex structure on C satis-

fying
s =4 sogg)(o0) onUy
° o0 on Ky

where 0 denotes the standerd complex structure. Then the Measur-
able Riemann Mapping Theorem tells that there exists an analytic
isomorphism

Fs:(C, 05) — (C, 09).

We can uniquely choose F; satisfying f, := F; o fo o F;'! a monic,
centered and s 0 s o F; ! tangent to the identity at oo.
We call
R(f) :={fsls € Ry}

the stretching ray through f. Since G(fs) = sG(f), the stretching
ray intersects G7!(r) in the exactly one point for any r € R,.

3.4 Fibration

One of the main result of [B-H] is

Theorem 3.1 ([B-H] Theorem 11.1)
For any r € R, the map

R, x Gl(r) — E(3)
(S7f) = fs
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is @ homeomorphism and makes the next diagram commutative

R v G o) E3)
+

PM&\ 2 L/CT
R

.‘.
As a collorary G~!(r) for any r € R, is homeomorphic to S3.

4 The proof of Claim 2.3

We consider the real locus P(3) N R? of P(3). Then P(3) N R?
consists of
faop:=2"=3a’2+b (a,b€R).

The restriction of G to E(3) N R? shows
Lemma 4.1 For sufficiently large r > 0,
G ' (r)NR? ~ S?
and
G~ (r)Nn E* ~(0,1].

Because I; and real cubic map fap commute with the complex
conjugation

Lemma 4.2 The stretching ray R(f) through f € E(3) N R? is
contained in E(3) N R2. In particular for f € E* the streching ray
R(f) is contained in E*.

Therefore above lemmmas with Theorem 3.1 show the following
isomorphisms: for any r € R,
R;: x (G7}(r) N R?) E(3)NR?
Ry x (G (r)NEY) ~ E*
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