SOME NOTIONS OF CONVEXITY FOR SET－VALUED MAPS AND THEIR RELATIONS

新潟大学大学院自然科学研究科 黒岩 大史（Daishi Kuroiwa）

Abstract

We establish some notions of convexity of set－valued maps．These notions are generalizations of notions of convexity of vector－valued maps．Also we investigate some relations among the generalized concepts of convexity．

1．Introduction and Preliminaries

The notions of convexity of sets and functions play an important role in various fields of mathematics．For example，separation theorem，fixed point theorem，and minimax theorem are closely connected with convexity．The notion of convex of real－valued func－ tions has been extended in several ways in order to generalize results above，see［2－5］．

Also，set－valued analysis has been very widely developed and produced many appli－ cations in recent years．For example，fixed point theorem for set－valued maps has been generalized by many authors and has been applied to various problems，for instance， which are game theory，economic theory，and so on，see［1］．

The aim of this paper is to give various concepts concerned with convexity of set－valued maps，and to investigate some relations among them．These notions are generalization of notions of convexity of vector－valued maps．For a notion of convexity of vector－valued maps，there are some generalized notions for set－valued maps．But it is difficult to investigate all notions of convexity of set－valued maps．Hence，we define six notions of convexity of set－valued maps and investigate some relations among them．

First，we give the preliminary terminology used throughout this paper．Let X be a real vector space，C a nonempty convex subset of X, Y a real topological vector space，P a convex cone in Y ，and Y^{*} the continuous dual space of Y ．For any vector space V ，let θ_{V} be the null vector in V ．For a nonempty subset A of Y ，we set $A^{+} \equiv\left\{y^{*} \in Y^{*} \mid\left\langle y^{*}, a\right\rangle \geq\right.$ 0 ，for all $a \in A\}$ ．The set A^{+}is called the positive polar cone of A ．We define a relation \leq_{P} in Y by the convex cone P ：for $y_{1}, y_{2} \in Y, y_{1} \leq_{P} y_{2} \Longleftrightarrow y_{2}-y_{1} \in P$ ．If P is pointed，that is，$P \cap(-P)=\left\{\theta_{Y}\right\}$ ，the relation \leq_{P} is an order relation in Y ．In this paper，however，we do not assume that P is pointed．We mention about set－valued map． F is called a set－valued map from C to Y if F is a map from C to 2^{Y} ，which is the power set of Y ，and then we write $F: C \leadsto Y$ ．For a set－valued map $F: C \leadsto Y$ ，we define $\operatorname{Graph}(F) \equiv\{(x, y) \mid x \in C, y \in F(x)\}$ and $\operatorname{Dom}(F) \equiv\{x \in C \mid F(x) \neq \emptyset\}$ ．The set $\operatorname{Graph}(F)$ is called the graph of F and $\operatorname{Dom}(F)$ is called the domain of F ．In this paper，

[^0]we consider the case $C=\operatorname{Dom}(F)$. There are two manners to define the inverse image by a set-valued map $F: C \leadsto Y$ of a subset M of $Y, F^{-1}(M) \equiv\{x \in C \mid F(x) \cap M \neq \emptyset\}$ and $F^{+1}(M) \equiv\{x \in C \mid F(x) \subset M\}$. The subset $F^{-1}(M)$ is called the inverse image of M by F and $F^{+1}(M)$ is called the core of M by F. A set-valued map F is said to be convex-valued (resp. closed-valued, compact-valued, and so on), if for any $x \in C$ the set $F(x)$ is a convex set (resp. a closed set, a compact set, and so on). A set-valued map F is said to be P-convex-valued if for any $x \in C$ the set $F(x)+P$ is a convex set. Details of set-valued maps can be found in [1].

2. Definitions of Convexity of Set-Valued Maps and their Relations

Next, we mention various types of convexity of set-valued maps. Such notions of convexity of set-valued maps are generalized notions of convexity of vector-valued maps. We note that there are many ways with respect to such generalization. In detail, see [4].
Definition 1. A set-valued map $F: C \rightsquigarrow Y$ is said to be
(i) convex if for every $x_{1}, x_{2} \in C, y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right)$, and $\lambda \in(0,1)$, there exists $y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ such that $y \leq_{P} \lambda y_{1}+(1-\lambda) y_{2}$;
(ii) convexlike if for every $x_{1}, x_{2} \in C, y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right)$, and $\lambda \in(0,1)$, there exists $(x, y) \in \operatorname{Graph}(F)$ such that $y \leq_{P} \lambda y_{1}+(1-\lambda) y_{2}$;
(iii) properly quasiconvex if for every $x_{1}, x_{2} \in C, y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right)$, and $\lambda \in$ $(0,1)$, there exists $y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ such that either $y \leq_{P} y_{1}$ or $y \leq_{P} y_{2}$;
(iv) quasiconvex if for every $x_{1}, x_{2} \in C, y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right)$, and $\lambda \in(0,1)$, if $y \in Y$ satisfies $y_{1} \leq_{P} y$ and $y_{2} \leq_{P} y$, then there exists $y^{\prime} \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ such that $y^{\prime} \leq_{P} y$;
(v) naturally quasiconvex if for every $x_{1}, x_{2} \in C, y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right)$, and $\lambda \in(0,1)$, there exists $y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ and $\eta \in[0,1]$ such that $y \leq_{P}$ $\eta y_{1}+(1-\eta) y_{2}$;
(vi) *-quasiconvex if for each $y^{*} \in P^{+}$, function $x \longmapsto \inf _{y \in F(x)}\left\langle y^{*}, y\right\rangle$ is quasiconvex on C.

Then we have the following:
Proposition 1. The following statements hold:
(i) F is convex if and only if $\operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P$ is a convex set;
(ii) F is convexlike if and only if $F(C)+P$ is a convex set;
(iii) F is quasiconvex if and only if for all $y \in Y$, the set $F^{-1}(y-P)$ is a convex set.

Proof. First we prove (i). Let F be convex. We show that $\operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P$ is a convex set. For any $z_{1}, z_{2} \in \operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P$, there exist $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ $\operatorname{Graph}(F), p_{1}, p_{2} \in P$ such that $z_{1}=\left(x_{1}, y_{1}\right)+\left(\theta_{X}, p_{1}\right)$ and $z_{2}=\left(x_{2}, y_{2}\right)+\left(\theta_{X}, p_{2}\right)$. Since F is convex, for any $\lambda \in(0,1)$, there is $y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ such that such that $y \leq_{P} \lambda y_{1}+(1-\lambda) y_{2}$. Hence, $\lambda z_{1}+(1-\lambda) z_{2}=\lambda\left\{\left(x_{1}, y_{1}\right)+\left(\theta_{X}, p_{1}\right)\right\}+(1-$ $\lambda)\left\{\left(x_{2}, y_{2}\right)+\left(\theta_{X}, p_{2}\right)\right\}=\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda y_{1}+(1-\lambda) y_{2}\right)+\left(\theta_{X}, \lambda p_{1}+(1-\lambda) p_{2}\right) \in$ $\operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P+\left\{\theta_{X}\right\} \times P=\operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P$. Therefore, $\operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P$ is convex.

We show F is convex when $\operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P$ is convex. For any $x_{1}, x_{2} \in C$, $y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right)$, and $\lambda \in(0,1)$, since $\operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P$ is a convex set and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P, \lambda\left(x_{1}, y_{1}\right)+(1-\lambda)\left(x_{2}, y_{2}\right) \in \operatorname{Graph}(F)+\left\{\theta_{X}\right\} \times P$. Then there exists $p \in P$ such that $\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda, y_{1}+(1-\lambda) y_{2}-p\right) \in \operatorname{Graph}(F)$. Hence there is $y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ such that $y=y_{1}+(1-\lambda) y_{2}-p$. Thus, F is convex.

Proof of (ii) is similar to (i).
Finally, we show (iii). Let F be quasiconvex and let $y \in Y$. We show that $F^{-1}(y-P)$ is a convex set. We can assume that $F^{-1}(y-P) \neq \emptyset$. For any $x_{1}, x_{2} \in F^{-1}(y-P)$, and $\lambda \in(0,1)$, we have $F\left(x_{1}\right) \cap(y-P) \neq \emptyset$, and $F\left(x_{2}\right) \cap(y-P) \neq \emptyset$. Then, there exist $y_{1} \in F\left(x_{1}\right)$, and $y_{2} \in F\left(x_{2}\right)$ such that $y_{1}, y_{2} \in y-P$. Since F be quasiconvex, there exists $y^{\prime} \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ such that $y^{\prime} \in y-P$. Then $\lambda x_{1}+(1-\lambda) x_{2} \in F^{-1}(y-P)$ and it is shown that $F^{-1}(y-P)$ is a convex set.

Next, we prove that F is quasiconvex when $F^{-1}(y-P)$ is convex for each $y \in Y$. For any $x_{1}, x_{2} \in C, y_{1} \in F\left(x_{1}\right), x_{2} \in F\left(x_{2}\right)$, lambda $\in(0,1)$, and $y \in Y$ with $y_{1} \leq_{P} y$ and $y_{2} \leq_{P} y$, we have $x_{1}, x_{2} \in F^{-1}(y-P)$. Since $F^{-1}(y-P)$ is convex, $\lambda x_{1}+(1-\lambda) x_{2} \in$ $F^{-1}(y-P)$. Then, there exists $y^{\prime} \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ such that $y^{\prime} \in y-P$. Hence F is quasiconvex.

Proposition 2. The following statements hold:
(i) every convex map is also convexlike;
(ii) every convex map is also naturally quasiconvex;
(iii) properly quasiconvex map is also naturally quasiconvex;
(iv) naturally quasiconvex map is also quasiconvex;
(v) naturally quasiconvex map is also *-quasiconvex.

Proof. It is easy to show that (i), (ii), (iii), and (iv). We prove that naturally quasiconvex map is also *-quasiconvex. Let F be naturally quasiconvex. If for some $y^{*} \in P^{*}, x \longmapsto$ $\inf _{y \in F(x)}\left\langle y^{*}, y\right\rangle$ is not quasiconvex on C, there exist $x_{1}, x_{2} \in C$, and $\lambda \in(0,1)$ such that, $\inf _{y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)}\left\langle y^{*}, y\right\rangle>\max \left\{\inf _{y \in F\left(x_{1}\right)}\left\langle y^{*}, y\right\rangle, \inf _{y \in F\left(x_{2}\right)}\left\langle y^{*}, y\right\rangle\right\}$. Then there exist $y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right)$ such that $\inf _{y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)}\left\langle y^{*}, y\right\rangle>\max \left\{\left\langle y^{*}, y_{1}\right\rangle,\left\langle y^{*}, y_{2}\right\rangle\right\}$ Since F is naturally quasiconvex, there exists $y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$ and $\eta \in[0,1]$ such that $y \leq_{P} \eta y_{1}+(1-\eta) y_{2}$. Hence $\left\langle y^{*}, y\right\rangle \leq \eta\left\langle y^{*}, y_{1}\right\rangle+(1-\eta)\left\langle y^{*}, y_{2}\right\rangle \leq \max \left\{\left\langle y^{*}, y_{1}\right\rangle\right.$, $\left.\left\langle y^{*}, y_{2}\right\rangle\right\}$. This is a contradiction. Therefore F is $*$-quasiconvex.

We give a relation between *-quasiconvex and naturally quasiconvex the following:
Theorem 1. Assume that Y is a locally convex space and F is a P-convex-valued map. If F is *-quasiconvex, then F is also naturally quasiconvex.

Proof. The proof is by contradiction. Assume that F is not naturally quasiconvex. Then, there exist $x_{1}, x_{2} \in C, y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right), \lambda \in(0,1)$ such that

$$
F\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \cap\left\{\left[y_{1}, y_{2}\right]-P\right\}=\emptyset
$$

where $\left[y_{1}, y_{2}\right] \equiv\left\{\lambda y_{1}+(1-\lambda) y_{2} \mid \lambda \in[0,1]\right\}$. This condition is equivalent to the following:

$$
F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)-\left[y_{1}, y_{2}\right]+P \not \supset \theta_{Y} .
$$

Since $F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)+P$ is closed convex and $\left[y_{1}, y_{2}\right]$ is compact convex, we have $F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)-\left[y_{1}, y_{2}\right]+P$ is closed convex. Hence, by separation theorem, there exist $\overline{y^{*}} \in Y^{*} \backslash\left\{\theta_{Y^{*}}\right\}$ and $\alpha \in \boldsymbol{R}$ such that

$$
\left\langle\overline{y^{*}}, y\right\rangle-\left\langle\overline{y^{*}}, \eta y_{1}+\left(1-\eta y_{2}\right)\right\rangle+\left\langle\overline{y^{*}}, p\right\rangle>\alpha>0
$$

for all $\eta \in[0,1], p \in P$, and $y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$. Since $\left\langle\overline{y^{*}}, p\right\rangle$ is bounded below with respect to $p \in P$, we deduce that $\overline{y^{*}} \in P^{+}$. Then, we have

$$
\inf _{y \in F\left(\lambda x_{1}+(1-\lambda) x_{2}\right)}\left\langle\overline{y^{*}}, y\right\rangle>\max \left\{\inf _{y \in F\left(x_{1}\right)}\left\langle\overline{y^{*}}, y\right\rangle, \inf _{y \in F\left(x_{2}\right)}\left\langle\overline{y^{*}}, y\right\rangle\right\} .
$$

This contradicts that the function $x \mapsto \inf _{y \in F(x)}\left\langle\overline{y^{*}}, y\right\rangle$ is quasiconvex.
Finally, we give a relation between naturally quasiconvex and convexlike. For this, we recall two concepts of continuity of set-valued maps, lower semicontinuous and upper semicontinuous. A set-valued map $F: C \leadsto Y$ is said to be
(i) lower semicontinuous (l.s.c.) at $x \in C$ if for any open set U with $F(x) \cap U \neq \emptyset$, there exists a neighborhood V of x such that $V \subset F^{-1}(U)$.
(ii) upper semicontinuous (u.s.c.) at $x \in C$ if for any open set U with $F(x) \subset U$, there exists a neighborhood V of x such that $V \subset F^{+1}(U)$.
F is said to be lower semicontinuous (resp. u.s.c.) if and only if it is lower semicontinuous at every point of C (resp. u.s.c.). When F is a single-valued map, (i) and (ii) are equivalent to the continuity of vector-valued maps. Then we have the following:

Theorem 2. We assume that P is closed and F is upper semicontinuous and P-convexvalued. If F is naturally quasiconvex then it is convexlike.
Proof. This theorem proves by contradiction. We assume that F is not convexlike. Then, there exist $x_{1}, x_{2} \in C, y_{1} \in F\left(x_{1}\right), y_{2} \in F\left(x_{2}\right), \bar{\lambda} \in(0,1)$ such that

$$
F(C) \cap\left\{\bar{\lambda} y_{1}+(1-\bar{\lambda}) y_{2}-P\right\}=\emptyset
$$

hence,

$$
\begin{equation*}
F\left(\left[x_{1}, x_{2}\right]\right) \cap\left\{\bar{\lambda} y_{1}+(1-\bar{\lambda}) y_{2}-P\right\}=\emptyset, \tag{2.1}
\end{equation*}
$$

where $\left[x_{1}, x_{2}\right] \equiv\left\{\lambda x_{1}+(1-\lambda) x_{2} \mid \lambda \in[0,1]\right\}$. Also, we define the following vectors and sets: for all $\lambda \in[0,1]$,

$$
\begin{gathered}
x(\lambda) \equiv \lambda x_{1}+(1-\lambda) x_{2} \text { and } y(\lambda) \equiv \lambda y_{1}+(1-\lambda) y_{2} \\
B_{1} \equiv \bigcup_{\lambda \in[\bar{\lambda}, 1]}(y(\lambda)-P) \backslash(y(\bar{\lambda})-P) \text { and } B_{2} \equiv \bigcup_{\lambda \in[0, \bar{\lambda}]}(y(\lambda)-P) \backslash(y(\bar{\lambda})-P) .
\end{gathered}
$$

From naturally quasiconvexity of F, for each $\lambda \in[0,1]$,

$$
F(x(\lambda)) \cap \bigcup_{\eta \in[0,1]}(y(\lambda)-P) \neq \emptyset
$$

Here, we define the number $a \equiv \sup \left\{\lambda \in[0,1] \mid F(x(\eta)) \cap B_{2} \neq \emptyset, \forall \eta \in[0, \lambda]\right\}$. Clearly $a \in[0,1]$ because $F(x(0)) \cap B_{2}=F\left(x_{2}\right) \cap B_{2} \neq \emptyset$. From (2.1) and convexity of $F(x(a))$, one of the following condition (2.2) and (2.3) holds:

$$
\begin{align*}
& F(x(a)) \cap B_{1} \neq \emptyset \text { and } F(x(a)) \cap B_{2}=\emptyset \tag{2.2}\\
& F(x(a)) \cap B_{1}=\emptyset \text { and } F(x(a)) \cap B_{2} \neq \emptyset . \tag{2.3}
\end{align*}
$$

First, we consider the case when (2.2) is true. Clearly, $a \neq 0$. From (2.1) and (2.2), $F(x(a)) \cap\left\{B_{2} \cup(y(\bar{\lambda})-P)\right\}=\emptyset$. Then

$$
F(x(a)) \subset\left\{B_{2} \cup(y(\bar{\lambda})-P)\right\}^{c} .
$$

Now, we show that $B_{2} \cup(y(\bar{\lambda})-P)$ is a closed set in Y. In fact, let a net $\left\{z_{\alpha}\right\} \subset$ $B_{2} \cup(y(\bar{\lambda})-P)$ converges to $z \in Y$. Since $B_{2} \cup(y(\bar{\lambda})-P)=\bigcup_{\lambda \in[0, \bar{\lambda}]}(y(\lambda)-P)$, there exists $\left\{\lambda_{\alpha}\right\} \subset[0, \bar{\lambda}]$ and $\left\{p_{\alpha}\right\} \subset P$ such that $z_{\alpha}=y\left(\lambda_{\alpha}\right)-p_{\alpha}$. Since the set $[y(0), y(\bar{\lambda})]$ is compact, there exist a subnet $\{\beta\} \subset\{\alpha\}$ and $\hat{\lambda} \in[0, \bar{\lambda}]$ such that $\lim _{\beta} y\left(\lambda_{\beta}\right)=y(\hat{\lambda})$ and $-\lim _{\beta} p_{\beta}=\lim _{\beta}\left(z_{\beta}-y\left(\lambda_{\beta}\right)\right)=z-y(\hat{\lambda})$. Since P is closed, $z-y(\hat{\lambda}) \in-P$. Hence $z \in y(\hat{\lambda})-P \subset \bigcup_{\lambda \in[0, \bar{\lambda}]}(y(\lambda)-P)$. Thus, $B_{2} \cup(y(\bar{\lambda})-P)$ is a closed set in Y.

Since $\left\{B_{2} \cup(y(\bar{\lambda})-P)\right\}^{c}$ is an open set and F is upper semicontinuous, there exists a neighbourhood V of $x(a)$ such that

$$
F(V) \cap\left\{B_{2} \cup(y(\bar{\lambda})-P)\right\}=\emptyset
$$

From this, there exists $c \in(0, a)$ such that $[x(c), x(a)] \subset V$. Hence, for each $\lambda \in[c, a]$, $F(x(\lambda)) \cap B_{2}=\emptyset$. This contradicts the definition of a.

In the similar way, it is shown that (2.3) is not true. This is a contradiction.
Consequently, we have completed the proof.
Remark 2.1. Theorem 2 is a generalization of Lemma 2.1(iv) in [5].

References

1. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
2. M. Hayashi and H. Komiya, Perfect Duality for Convexlike Programs, J. Math. Anal. Appl. 38 (2) (1982), 179-189.
3. V. Jeyakumar, W. Oettli and M. Natividad, A Solvability Theorem for a Class of Quasiconves Mappings with Applications to Optimization, J. Math. Anal. Appl. 179 (1993), 537-546.
4. D. Kuroiwa, Convexity for Set-Valued Maps, Appl. Math. Letters, to appear.
5. T. Tanaka, Generalized Quasiconvexities, Cone Saddle Points, and Minimax Theorem for VectorValued Functions, J. Optim. Theo. Appl. 81(2) (1994), 355-377.

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Nilgata 950-21, Japan

[^0]: Key words and phrases．Set－valued analysis，Convex analysis，Convexity of vector－valued maps．

