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Existence of Entire Solutions for Superlinear

Elliptic Problems in R

by Norimichi Hirano(Yokohama National University)

PFOEER - T FE WAy

1. Introduction . In this talk, we are concerned with positive
solutions of the following problem:

(P) — Au+u = g(z,u), v>0, inRY
ue HY(RY), N >2

where f : RY — R and g : Q x R — R is continuous with g(z,0) = 0

for z € Q). In the last decade, the existence and the properties of the

solutions of problem (P) has been studied by many authors. Recently,

the existence of positive solutions of semilinear elliptic problem

—Aut+u=Qx=)|ulP 'y, zeRN
(Po) { Q@) |u|

ue HY(RY), N>2

has been studied by several authors, where 1l < pfor N =2and 1 < p <
(N+2)/(N=2) for N > 3, Q(z) is positive bounded continuous function.
If the function Q(z) is a radial function, the existence of infinity many
solutions of problem (Pg) can be shown by restricting our attention to
the radial functions(cf. [1]). In case that Q(z) is nonradial, we encounter
a difficultly caused by lack of compact embedding of Sobolev type. In
[6,7], P.L. Lions presented a method, called concentrate compactness
method, which enable us to solve problems with lack of compactness,
and established the following result: Assume that

llmlxl——»ooQ(a’) = §(> 0) and Q(l’) > @ on RN)
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then problem (Pg) has a positive solution. This result is based on the
observation that the ground state level cg of the functional

1 2 1 , |
Ig(u) = 5 /RN(I Vu | + | u |*)dz - m/RN Q(z)uPtldz

1s lower than the ground state level o of functional Ia. We can apply
the concentrate compactness method problem (P) to the problem in case
that g : RY x R — R satisfies lim|;|—o g(z,t) = tP and the least critical
level ¢; of the functional

I(u) = %/RN(I Vul? +|u |2)da:—/RN '/O.U(w)g(:c,t)dtd:c,

u € HY(RY), is lower than that of

1 1
Ioo(u>:§/RN(l Vu |2+Iu|2)d$—m/up+ld$.

Under additional conditions on g, the exsitence of positive solutions (P)
was established by Ding & Ni[4] and Stuart[10]. Recently, Cao[2] proved

the existence of positive solution of (Pg) for the case that cg < g

under the hypothesis that limj,)—. Q(z) = Q and Q(z) > 2(1-»)/2()
on RY. In case that cQ = cg, we encounter a difficulity, bacause we
can not apply the concentrate compactness method directly. On the
other hand, in case that g is not given by the form Q(x)t?, we have
to overcome another difficulity: that is, we can not use the Lagrange’s
method of indeterminate coefficients. In the problem (Pg), we find a
solution u of minimizing problem

inf{Ip(u) :u € i},
Vi={ue H'(RY),u>0, Q(z)uPtide = 1}
RN

Then cu is a solution of (Pg) for some ¢ > 0. The Lagrange’s method
does not work if g is not the form Q(z)t*. Our approach enable us to
treat the problem (P) with g satisfying that ¢g(0) = 0 and g(t) — t? as
t — co. We also consider the nonhomoginous case:

{ —Autu=|ulP"tu+f, zeRN

P
1) ue H'(RY), N>3
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where p>1for N=1and 1<p< (N+2)/(N—-2)for N >3.

The nonhomogeneous problem (P;) was studied by Zhu[12]. In [12],
the existence of at least two solutions of (P) was proved for nonnegative
functions f € L?(R") with a small L?~norm and a exponential decay

f(z) < Cexp{—(1+¢€) |z |}, for z € RY.

In the present paper, we consider multiple existence of solutions of (P)
for nonnegative functions f € LY(RY), where ¢ = (p+1)/p. Our result
does not require that f € L°(R") or any condition for the decay of f
at infinity.

In this talk, we show an approach for problems (P) and (Py) based
on arguments using singular homology theory. Throughout this paper,
we denote by | - |, the norm of LI(RY). We impose the following
conditions on the continuous mapping g : RN x R — R:

(g1) There exists a positive number d < 1 such that
 —dt+ (1 —d)tP < g(z,t) < dt+ (1 +d)tP
for all (z,t) € RN x [0, 00);
(g2) there exists a positive number C' such that
| g:(x,0) |< 1 and 0 < t*gy(z,t) < C(1 +tP)
for all (z,t) € RY x [0,00);
(23) lim g(z, 1) =| ¢ P ¢

z|—o0

uniformly on bounded intervals in [0, c0),

where 1 < pfor N=2and 1 <p < (N+2)/(N —2)for N > 3, and
g+(-.-) stands for the derivative of g with respect to the second variable.
We can now state our main results.

Theorem 1. Suppose that (g2) and (g3) holds. Then there exists dy >
- 0 such that if (g1) holds with d < do , then problem (P) has a positive

solution.
For problem (Py), we have
Theorem 2. There exists a positive number C' such that for each f €

LI(RN), with f >0 and | f |,< C, problem (Py) possesses at least two
solutions.
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2. Preliminaries. @ We just give a sketch of a proof of Theorem 1
to show that how the singular homology theory works for the proof of
existence of positive solutions. We put H = H'(R"). Then H is a
Hilbert space with norm

luli=(/ (Ful+ ] uP)da)s
J RN

The norm of the dual space H=*(R") of H is also denoted by || - ||. B,
stands for the open ball centered at 0 with radius r. We denote by (-, -)
the pairing between H'(RY) and H~!(R"). For each r > 1, the norm
of L™(RY) is denoted by | - |.. For simplicity, we write | - |, instead of
| |p+1. For u € H, we set u*(z) = max{u(z),0}. We denote by C, the
minimal constant satisfying

lu [.<Cp || ull for u € H. (2.1)

It is easy to check that critical points of I are solutions of (P). It is
also obvious that nonzero critical points of I°° are solutions of (P) with
g(t) = t? for t > 0. For each functional F on H and a € R, we set
F,={ue H:F(u) <a}. We put

M= {ue EVO} ulP= | ugle,wiz)

M= = fue IO} ulf'= [ wtido)

For the proof of the following two propositions are crucial:

Proposition 2.1. There exists positive number dy < 670 and €y satis-
fying that if (g1) holds with d < dy, then for each 0 < € < ¢,

H*(I:_T_e,I:o) = H*(Ic+eaIe)
where H, (A, B) denotes the singular homology group for a pair (A, B)
of topological spaces(cf. Spanier[8]).

Proposition 2.2. For each positive number € < €,

s qooy_ J 2 1fg=0,
H(I(Ic+57[e )—{0 ch?_a_o
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Here we give a proof for Proposition 2.2.

We set
Ty (M) = {%Er(l)(c(t)—uoo)/t :ce C((~1,1); M*°) with ¢(0) = ueo},

C=C_UCs ={—Toloo : € RN} U {Tpt00 : = € R"}

and

Tu,.(C) = {tlg%(uoo( +t2) — Uoo(-))/t : x € RN},

It follows from the definition of M that the codimension of T, (M)
in H is one. It is also obvious that dimT,_(C) = N. We denote by

 H the subspace such that H = H & T,_(C). For each r > 0, we set
B? = B, N H. Here we consider the linealized equation

(L) —Au+ u — h(z)u = pu, u € H,p€R,

where h(z) = p | uso(z) |P~F for z € RY. Since —A is positive definite
and h(z)I is compact, we find by Freidrich’s theory that the negative
spectrums of A = —A—h(z)I are finite and each eigenspace correspond-
ing to a negative eigenvalue is finite dimensional. Then each eigenspace
corresponding to a nonpositive eigenvalue of L = —A + I — h(z)I
is finite dimensional. Then there exists ¢ > 0 and a decomposition
H = H_® Hy® Hy such that Hy = ker(L) and L is positive(negative)
definite on Hy (H_) with

(Lo,v) 2 co [ 0[PP (S —eo 0 [?)  for v € Hy(H-).

Since each u € C is a solution of problem (Ps), we can see that T, _(C) C
H,.

Lemma 2.3. dimH_ =1.

Proof. Since I™ attains its minimal on M at u., we have that
Tw. (M>) C Hy @ Hy. Then since the codimension of M is one, we

Uso

find that dimH_ < 1. On the other hand, we have

(Ltuoo, Uoo) = / (| Voo |2 + | Uoo ]2 —p | Uoo |p+1‘)da:
N RN
(2.2)
< / (| Voo > + | oo |* = | teo |PT)dz = 0.
RN
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Then we have that dimH_ > 1. This completes the proof. i

In the following we denote by ¢ an element of H_ with || ¢ ||= 1.
Here we note that since h € C®°(RY), each solution u of (L) is in
CY(R™). It then follows that if u has the form

u(r,0) = Y(r)é(fy1,- -, 0n-1), with £ Z const.,

in spherical coordinate, 1 satisfies that ¥(0) = 0.

We denote by H, the set of all radial functions in H and by (L)
the problem (L) restricted to H,.. Then, in spherical coordinates, the
problem (L) with g > 0 is reduced to

W)+ P ) 4 (- D= —pp(r),  r>0,4€C, (23)
ay(r), |
— = (0) =0, (2.4)

where C. = {¢ € C[0,00) : lim,_ 9(r) = 0}.
We next consider nonradial solutions of (L). In case of nonradial
functions, the problem (L) is deduced to

, n—1 , Q
W)+ ' () + (= 1) = =)o) = —p(r), 7> 0,9 &B)
$(0) = 0(2.6)
where a = k(k+n—1), k=1,2,---. Note that oy are the eigenvalues

of Laplacian —A on S™~!, the unit sphere, and the dimension of the
eigenspace Sy associate with oy is

<k+n—2> n+ 2k — 2
Pk = —_—

k n+k—-2"
That is there exists smooth functions {@r; : i = 1, - pr} defined
on S™7! such that Sk = span{vk.1," - -, Pk}, and the functions u =

Y(r)pk.i(0) are the solutions of (L).
Lemma 2.4. dimHy < N +1.

Proof. Since dimH_ = 1 and us € H,, we have by (2.2) that the
problems (2.3) , (2.4) has exactly one negative eigenvalue. We also note
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that each nonpositive eigenvalue p of problems (2.3) , (2.4) is simple.
Then the dimension of Hy , = Hy N H, is at most one.

We next consider nonradial cases. That is we will see that the
eigenspace of the problem (2.5) with x4 = 0 is N-dimensional space.
Recalling that VI(v) = 0 on C, we can see that

—Av+v—h(z)v=0 for all v € Ty, __(C). (2.7)

That is Ty, (C') C Hp. Since dimT,_(C) = N, we have that dimH, >
N. On the other hand, since u, satisfies v

n_.

Li(r) +p e Phur) =0, (28)

u''(r) +

.
we find that v(r) = ug, satisfies

n—1 a1

v"(r) + L () + (hl@) - 1) = S)e(r) = 0,

Then we find that the N-dimensional space C = span{v(r)p1; : i =
1,---,n — 1} is a subspace of solution set of (L) with 1 = 0. We claim
that there exists no nonradial solution of (L) with x4 = 0 which is not

contained in C. Suppose contrary, there exists a nonradial solution z of
(L) with g = 0 such that z L C. Then there exists ¢ € C, such that

n-—1 Qg

Y(r) + ((h(z) = 1) = 5)¥(r) =0

7"2

Yi(r) +

for some k > 1 and z = ¥(r)pp; are solutions of (L) with g = 0. The
equality above can be rewritten as

n—1 (o — 1)

'¢’N<T’> +
Then v = ¢(r)py,1 is a soluiton of problem

_ () — )
=

—Au+u— h(x)u u.
It then follows that

< —Au+u— h(z)u,u >< 0. (2.9)
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Since u is orthogonal to ¢, we obtain from (2.9) that dimH_ > 2. This
is a contradiciton. Thus we obtain that Hy = Ty,(C) & Hyp » and then
dimH, < N + 1. i

Here we recall that H has a decomposition H = H @ T,_(C) and

then H = 7, H @ 7,T,__(C) for each x € RN . Then since Cy are smooth
N —manifolds, we have that there exists ro > 0 such that

To((=1) oo + By, ) N7y (s + BY) = ¢ (2.10)

for all z,y € RY with z # y, and ¢ = 0, 1. Here we consider a restriction

I +F of I*° on Uy + H. Then from Lemma 3.2 and Lemma 3.3, we

have by Gromoll-Meyer theory[3] that there exists subspaces Hy Hs 1,
H, 5 of H, a positive number r; < rq, a mapping 8 € C'((H,2NB?), R)
and a homeomorphism ¥ : Uy + Bgl — Ueo + H such that H = H, &
Hy 1@ Hy 2 and

I, Lz @) =c—flu |* + [ ugy > +8(uz2) (2.11)

for each u € uoo—l—Bg1 with u = ue+ui4us 1 +u2 2, vy € Hy, us; € Ho
t = 1,2. It follows from Lemma 2.3 that H; » is one dimensional. Noting
that T, (M) C Hy @ H4 and uy, is the minimal point of I® on M, we
have by choosing r; sufficiently small that G(¢y2) is strictly increasing
as | t | increases in [—ry, 7], where @s € Ho o with || ¢o ||= 1.

Since I*° is even, it is obvious that I* has the form (2.11) on
—(uoo + BY). We also note that for each z € RY, (2.11) holds for each
u € Tp(Uoo + By, ) with 4 replaced by 7_, o 1.

Proof of Proposition 2.2. By the deformation property(cf. theorem
1.2 of Chang[3]) and the homotopy invariance of the homology groups,
we have

Ho(IZ 122,) =2 Hy(I,I2,), and

Hy(IP\C, IZ,) = Hy(IZ2, I2) = 0.

C—€) " Cc—E€

b

From the exactness of the singular homology groups

Hy(IZ\C, Ieme) — Ho(I2%,122) — Ho(I2°, I°\C)
- q—l(‘[:o\crlsie) -
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we find
0— H (I, I2,) — Hy(IZ°,I°\C) — 0.

?"c—e¢ c '7c

That is
H(I°,I2,) = Hy(I®, I2\C).

cC YT Cc—€

Noting that U{r;(fuc + B ) : 2 € RV} are disjoint open neighbor-
hoods of C4 respectively, and that I is invariant under the translations
7z, we find from the excision property and (2.11) that

Ho (%, 1)
= H (122, I°\C)
= 0, (I N (Uiz 41 Ug 7o (it + By)),
I2° N (Uizt1 Ug T2(iteo + By, )\C))
= Hi(Uoo + Bila (Yoo + Bil)\{uooD
® Hy(—too + By, (—Uoo + B, )\{tioo})
=~ H,([0,1],{0,1}) ® H.([0,1],{0,1}).

This completes the proof. i

3. Proof of Theorem 1. We next consider a triple (U, K,¢e) C
H x H x R* satisfying the following conditions:

(1) UNn(=U)=¢;

(2) {Tpuso :| T |> 1} CintK for some r > 0;

(3) cd(Ie+eNK) Cint(IleyeNU);

(4) Hyv-1(I.4.NU)=1, Hi(I.4.NU)=0;

5) I is a strong deformation retract of I.4.\(K U (—=K));

6) Hy-1((Le4e NUN\K) =2 or Ho((Ie+e NU\K) > 2
holds.

Proposition 3.1. There exists a triple (U, K,e) C H x H x R™ which
satisfies (1) - (6).

We omit the proof of Proposition 3.1.
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Lemma 3.2. Suppose that there exist a triple (U,K,e) C Hx H x R
satisfying (1)-(6). Suppose in addition that Hy_1((Ic+e NU)\K) > 2.
Then Hy(Ieqe, L) > 2.

Proof. We put K = KU (=K). Since I is a strong deformation retract
of I.4+\I{, we find that

Hy(Iy \K, 1) = Hy(I.,I.) 2 0.

Then we have from the exactness of the singular homology groups of the
triple (Ioye, Ie4e\ &, I¢) that

0 — Hy(Ioye, L) = Hy(Ioqe, Iy \K) — 0.

That is _
Hq(Ic+€7 Ie) = Hq(Ic+ev Ic+e\K)-

From (1), we find
Hy(Iye, Iy \K) 2 Hy (W, W\K) @ H,(-W, (=W)\(=K))

where W = I.4.NU. Then since Hy_1(W\K) > 2, we have from (4)
and the exactness of the sequence

— Hy(W,W\K) — H,_y(W\K) = Hy_1 (W) = H,_ (W, W\K) —
(3.1)
with ¢ = N that Hy(Ieye, I.) & Hy(W, W\K) & Hy (W, W\K) > 2.
i

Lemma 3.3. Suppose that (U, K,e) C H x H x RY satisfies (1) - (6).
Suppose in addition that Hy(I.4+c NU) = Ho((Ie4+e NU)\K) = 1. Then
Hi(Iye,1) = 0 or Hy(Ioye,I.) = 2 holds.

Proof. From the argument in the proof of Proposition 3.2, we have that
Hi(Ioye,I) 2 Hi(Ie4 e NU, (Ie4  NUNK) S Hy (Ier e MU, (Ieg. . NU\K).
Then since Hi(I.+.NU) =0, and Ho(I.4+.NU) = Ho((I.4+NU)\K) = 1,
the assertion follows from the exactness of the sequence (3.1) with ¢ = 1.
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We can now prove Theorem 1.

Proof of Theorem. Let (U, K, ¢€) be the triple constructed above.
We have by Proposition 2.1 and Proposition 2.2 that Hy(Ioqe, lc) = 2
and Hy(I.4+c,I.) = 0 for ¢ # 1. Now suppose that (I.+. N U\K is
disconnected. Then since Ho((I.4eNU)\K) > 2, we find by Lemma 3.2
that Hy(I.4e, I.) = 2. This is a contradiction. On'the other hand, if
U\K is connected, then Ho(U\K) = 1. Then by Lemma 3.3, we have
H (I.ye,I.) =0 or Ho(Io4e,I) = 2. This is a contradiction. Thus we
obtain that there exists a positive solution of (P). i
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