Existence of Entire Solutions for Superlinear Elliptic Problems in \mathbb{R}^N

by Norimichi Hirano (Yokohama National University)

横浜国大・工 平野 載倫

1. Introduction. In this talk, we are concerned with positive solutions of the following problem:

(P)
$$\begin{cases} -\Delta u + u = g(x, u), & u > 0, & \text{in } \mathbb{R}^N \\ u \in H^1(\mathbb{R}^N), & N \ge 2 \end{cases}$$

where $f: \mathbb{R}^N \to \mathbb{R}$ and $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is continuous with g(x,0) = 0 for $x \in \Omega$. In the last decade, the existence and the properties of the solutions of problem (P) has been studied by many authors. Recently, the existence of positive solutions of semilinear elliptic problem

$$\begin{cases}
-\Delta u + u = Q(x) | u|^{p-1} u, & x \in \mathbb{R}^N \\
u \in H^1(\mathbb{R}^N), & N \ge 2
\end{cases}$$

has been studied by several authors, where 1 < p for N = 2 and $1 for <math>N \ge 3$, Q(x) is positive bounded continuous function. If the function Q(x) is a radial function, the existence of infinity many solutions of problem (P_Q) can be shown by restricting our attention to the radial functions(cf. [1]). In case that Q(x) is nonradial, we encounter a difficultly caused by lack of compact embedding of Sobolev type. In [6,7], P.L. Lions presented a method, called concentrate compactness method, which enable us to solve problems with lack of compactness, and established the following result: Assume that

$$\lim_{|x|\to\infty} Q(x) = \overline{Q}(>0)$$
 and $Q(x) \ge \overline{Q}$ on \mathbb{R}^N ,

then problem (P_Q) has a positive solution. This result is based on the observation that the ground state level c_Q of the functional

$$I_Q(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx - \frac{1}{p+1} \int_{\mathbb{R}^N} Q(x) u^{p+1} dx$$

is lower than the ground state level $c_{\overline{Q}}$ of functional $I_{\overline{Q}}$. We can apply the concentrate compactness method problem (P) to the problem in case that $g: R^N \times R \to R$ satisfies $\lim_{|x| \to \infty} g(x,t) = t^p$ and the least critical level c_1 of the functional

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx - \int_{\mathbb{R}^N} \int_0^{u(x)} g(x, t) dt dx,$$

 $u \in H^1(\mathbb{R}^N)$, is lower than that of

$$I^{\infty}(u) = \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx - \frac{1}{p+1} \int u^{p+1} dx.$$

Under additional conditions on g, the exsitence of positive solutions (P) was established by Ding & Ni[4] and Stuart[10]. Recently, Cao[2] proved the existence of positive solution of (P_Q) for the case that $c_Q \leq c_{\overline{Q}}$ under the hypothesis that $\lim_{\|x\|\to\infty}Q(x)=\overline{Q}$ and $Q(x)\geq 2^{(1-p)/2}\overline{Q}$ on R^N . In case that $c_Q=c_{\overline{Q}}$, we encounter a difficulity, bacause we can not apply the concentrate compactness method directly. On the other hand, in case that g is not given by the form $Q(x)t^p$, we have to overcome another difficulity: that is, we can not use the Lagrange's method of indeterminate coefficients. In the problem (P_Q) , we find a solution u of minimizing problem

$$\inf\{I_Q(u) : u \in V_\lambda\},\$$

$$V_\lambda = \{u \in H^1(R^N), u > 0, \int_{R^N} Q(x)u^{p+1}dx = 1\}$$

Then cu is a solution of (P_Q) for some c > 0. The Lagrange's method does not work if g is not the form $Q(x)t^p$. Our approach enable us to treat the problem (P) with g satisfying that g(0) = 0 and $g(t) \to t^p$ as $t \to \infty$. We also consider the nonhomogenous case:

$$\begin{cases}
-\Delta u + u = |u|^{p-1} u + f, & x \in \mathbb{R}^N \\
u \in H^1(\mathbb{R}^N), & N \ge 3
\end{cases}$$

where p > 1 for N = 1 and $1 for <math>N \ge 3$.

The nonhomogeneous problem (P_f) was studied by Zhu[12]. In [12], the existence of at least two solutions of (P) was proved for nonnegative functions $f \in L^2(\mathbb{R}^N)$ with a small L^2 -norm and a exponential decay

$$f(x) \le Cexp\{-(1+\epsilon) \mid x \mid\}, \quad \text{for } x \in \mathbb{R}^N.$$

In the present paper, we consider multiple existence of solutions of (P) for nonnegative functions $f \in L^q(\mathbb{R}^N)$, where q = (p+1)/p. Our result does not require that $f \in L^{\infty}(\mathbb{R}^N)$ or any condition for the decay of f at infinity.

In this talk, we show an approach for problems (P) and (P_f) based on arguments using singular homology theory. Throughout this paper, we denote by $|\cdot|_q$ the norm of $L^q(R^N)$. We impose the following conditions on the continuous mapping $g: R^N \times R \to R$:

(g1) There exists a positive number d < 1 such that

$$-dt + (1-d)t^p \le g(x,t) \le dt + (1+d)t^p$$
 for all $(x,t) \in \mathbb{R}^N \times [0,\infty)$;

(g2) there exists a positive number C such that

$$|g_t(x,0)| < 1$$
 and $0 < t^2 g_{tt}(x,t) < C(1+t^p)$

for all
$$(x,t) \in \mathbb{R}^N \times [0,\infty)$$
;

(g3)
$$\lim_{|x| \to \infty} g(x,t) = |t|^{p-1} t$$

uniformly on bounded intervals in $[0, \infty)$,

where 1 < p for N = 2 and $1 for <math>N \ge 3$, and $g_t(\cdot,\cdot)$ stands for the derivative of g with respect to the second variable. We can now state our main results.

Theorem 1. Suppose that (g2) and (g3) holds. Then there exists $d_0 > 0$ such that if (g1) holds with $d < d_0$, then problem (P) has a positive solution.

For problem (P_f) , we have

Theorem 2. There exists a positive number C such that for each $f \in L^q(\mathbb{R}^N)$, with $f \geq 0$ and $|f|_q < C$, problem (P_f) possesses at least two solutions.

2. Preliminaries. We just give a sketch of a proof of Theorem 1 to show that how the singular homology theory works for the proof of existence of positive solutions. We put $H = H^1(\mathbb{R}^N)$. Then H is a Hilbert space with norm

$$||u|| = (\int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx)^{1/2}.$$

The norm of the dual space $H^{-1}(R^N)$ of H is also denoted by $\|\cdot\|$. B_r stands for the open ball centered at 0 with radius r. We denote by $\langle\cdot,\cdot\rangle$ the pairing between $H^1(R^N)$ and $H^{-1}(R^N)$. For each r>1, the norm of $L^r(R^N)$ is denoted by $|\cdot|_r$. For simplicity, we write $|\cdot|_*$ instead of $|\cdot|_{p+1}$. For $u \in H$, we set $u^+(x) = \max\{u(x), 0\}$. We denote by C_p the minimal constant satisfying

$$|u|_* \le C_p ||u|| \qquad \text{for } u \in H. \tag{2.1}$$

It is easy to check that critical points of I are solutions of (P). It is also obvious that nonzero critical points of I^{∞} are solutions of (P) with $g(t) = t^p$ for $t \geq 0$. For each functional F on H and $a \in R$, we set $F_a = \{u \in H : F(u) \leq a\}$. We put

$$M = \{u \in H \setminus \{0\} : ||u||^2 = \int_{R^N} ug(x, u) dx\}$$
$$M^{\infty} = \{u \in H \setminus \{0\} : ||u||^2 = \int_{R^N} u^{p+1} dx\}$$

For the proof of the following two propositions are crucial:

Proposition 2.1. There exists positive number $d_0 < \tilde{d}_0$ and ϵ_0 satisfying that if (g1) holds with $d \leq d_0$, then for each $0 < \epsilon < \epsilon_0$,

$$H_*(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty}) = H_*(I_{c+\epsilon}, I_{\epsilon})$$

where $H_*(A, B)$ denotes the singular homology group for a pair (A, B) of topological spaces(cf. Spanier[8]).

Proposition 2.2. For each positive number $\epsilon < \epsilon_0$,

$$H_q(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty}) = \begin{cases} 2 & \text{if } q = 0, \\ 0 & \text{if } q \neq 0. \end{cases}$$

Here we give a proof for Proposition 2.2.

We set

$$T_{u_{\infty}}(M^{\infty}) = \{ \lim_{t \to 0} (c(t) - u_{\infty})/t : c \in C^{1}((-1, 1); M^{\infty}) \text{ with } c(0) = u_{\infty} \},$$
$$C = C_{-} \cup C_{+} = \{ -\tau_{x} u_{\infty} : x \in R^{N} \} \cup \{ \tau_{x} u_{\infty} : x \in R^{N} \}$$

and

$$T_{u_{\infty}}(\mathcal{C}) = \{ \lim_{t \to 0} (u_{\infty}(\cdot + tx) - u_{\infty}(\cdot))/t : x \in \mathbb{R}^N \}.$$

It follows from the definition of M^{∞} that the codimension of $T_{u_{\infty}}(M^{\infty})$ in H is one. It is also obvious that $\dim T_{u_{\infty}}(\mathcal{C}) = N$. We denote by \widetilde{H} the subspace such that $H = \widetilde{H} \oplus T_{u_{\infty}}(\mathcal{C})$. For each r > 0, we set $B_r^0 = B_r \cap \widetilde{H}$. Here we consider the linealized equation

$$(L) -\Delta u + u - h(x)u = \mu u, u \in H, \mu \in R,$$

where $h(x) = p \mid u_{\infty}(x) \mid^{p-1}$ for $x \in R^N$. Since $-\Delta$ is positive definite and h(x)I is compact, we find by Freidrich's theory that the negative spectrums of $A = -\Delta - h(x)I$ are finite and each eigenspace corresponding to a negative eigenvalue is finite dimensional. Then each eigenspace corresponding to a nonpositive eigenvalue of $L = -\Delta + I - h(x)I$ is finite dimensional. Then there exists $c_0 > 0$ and a decomposition $H = H_- \oplus H_0 \oplus H_+$ such that $H_0 = ker(L)$ and L is positive(negative) definite on $H_+(H_-)$ with

$$\langle Lv, v \rangle \ge c_0 \| v \|^2 (\le -c_0 \| v \|^2)$$
 for $v \in H_+(H_-)$.

Since each $u \in \mathcal{C}$ is a solution of problem (P_{∞}) , we can see that $T_{u_{\infty}}(\mathcal{C}) \subset H_0$.

Lemma 2.3. $dim H_{-} = 1$.

Proof. Since I^{∞} attains its minimal on M^{∞} at u_{∞} , we have that $T_{u_{\infty}}(M^{\infty}) \subset H_{+} \oplus H_{0}$. Then since the codimension of M^{∞} is one, we find that $\dim H_{-} \leq 1$. On the other hand, we have

$$\langle Lu_{\infty}, u_{\infty} \rangle = \int_{\mathbb{R}^{N}} (|\nabla u_{\infty}|^{2} + |u_{\infty}|^{2} - p |u_{\infty}|^{p+1}) dx$$

$$< \int_{\mathbb{R}^{N}} (|\nabla u_{\infty}|^{2} + |u_{\infty}|^{2} - |u_{\infty}|^{p+1}) dx = 0.$$
(2.2)

Then we have that $\dim H_{-} \geq 1$. This completes the proof.

In the following we denote by φ an element of H_{-} with $\|\varphi\|=1$. Here we note that since $h \in C^{\infty}(\mathbb{R}^{N})$, each solution u of (L) is in $C^{1}(\mathbb{R}^{N})$. It then follows that if u has the form

$$u(r,\theta) = \psi(r)\xi(\theta_1,\dots,\theta_{n-1}),$$
 with $\xi \not\equiv$ const.,

in spherical coordinate, ψ satisfies that $\psi(0) = 0$.

We denote by H_r the set of all radial functions in H and by (L_r) the problem (L) restricted to H_r . Then, in spherical coordinates, the problem (L_r) with $\mu > 0$ is reduced to

$$\psi''(r) + \frac{n-1}{r}\psi'(r) + (h-1)\psi = -\mu\psi(r), \qquad r > 0, \psi \in C_r, \quad (2.3)$$

$$\frac{d\psi(r)}{dr}(0) = 0, (2.4)$$

where $C_r = \{ \psi \in C[0, \infty) : \lim_{r \to \infty} \psi(r) = 0 \}.$

We next consider nonradial solutions of (L). In case of nonradial functions, the problem (L) is deduced to

$$\psi''(r) + \frac{n-1}{r}\psi'(r) + ((h-1) - \frac{\alpha_k}{r^2})\psi(r) = -\mu\psi(r), \qquad r > 0, \psi \notin 2\mathcal{H}_{\theta}$$

$$\psi(0) = 0(2.6)$$

where $\alpha_k = k(k+n-1)$, $k = 1, 2, \cdots$. Note that α_k are the eigenvalues of Laplacian $-\Delta$ on S^{n-1} , the unit sphere, and the dimension of the eigenspace S_k associate with α_k is

$$\rho_k = \binom{k+n-2}{k} \frac{n+2k-2}{n+k-2}.$$

That is there exists smooth functions $\{\varphi_{k,i}: i=1,\dots,\rho_k\}$ defined on S^{n-1} such that $S_k = span\{\varphi_{k,1},\dots,\varphi_{k,\rho_k}\}$, and the functions $u=\psi(r)\varphi_{k,i}(\theta)$ are the solutions of (L).

Lemma 2.4. $dim H_0 \le N + 1$.

Proof. Since $\dim H_{-} = 1$ and $u_{\infty} \in H_r$, we have by (2.2) that the problems (2.3), (2.4) has exactly one negative eigenvalue. We also note

that each nonpositive eigenvalue μ of problems (2.3), (2.4) is simple. Then the dimension of $H_{0,r} = H_0 \cap H_r$ is at most one.

We next consider nonradial cases. That is we will see that the eigenspace of the problem (2.5) with $\mu = 0$ is N-dimensional space. Recalling that $\nabla I(v) = 0$ on \mathcal{C} , we can see that

$$-\Delta v + v - h(x)v = 0 \qquad \text{for all } v \in T_{u_{\infty}}(\mathcal{C}). \tag{2.7}$$

That is $T_{u_{\infty}}(C) \subset H_0$. Since $\dim T_{u_{\infty}}(C) = N$, we have that $\dim H_0 \geq N$. On the other hand, since u_{∞} satisfies

$$u''(r) + \frac{n-1}{r}u'(r) + p \mid u_{\infty} \mid^{p-1} u(r) = 0,$$
 (2.8)

we find that $v(r) = u'_{\infty}$ satisfies

$$v''(r) + \frac{n-1}{r}v'(r) + ((h(x) - 1) - \frac{\alpha_1}{r^2})v(r) = 0.$$

Then we find that the N-dimensional space $\widetilde{C} = span\{v(r)\varphi_{1,i} : i = 1, \dots, n-1\}$ is a subspace of solution set of (L) with $\mu = 0$. We claim that there exists no nonradial solution of (L) with $\mu = 0$ which is not contained in \widetilde{C} . Suppose contrary, there exists a nonradial solution z of (L) with $\mu = 0$ such that $z \perp \widetilde{C}$. Then there exists $\psi \in C_r$ such that

$$\psi''(r) + \frac{n-1}{r}\psi'(r) + ((h(x) - 1) - \frac{\alpha_k}{r^2})\psi(r) = 0$$

for some k > 1 and $z = \psi(r)\varphi_{k,i}$ are solutions of (L) with $\mu = 0$. The equality above can be rewritten as

$$\psi''(r) + \frac{n-1}{r}\psi'(r) + ((h(x)-1) - \frac{(\alpha_k - \alpha_1)}{r^2})\psi(r) - \frac{\alpha_1}{r^2}\psi(r) = 0.$$

Then $u = \psi(r)\varphi_{1,1}$ is a solution of problem

$$-\Delta u + u - h(x)u = \frac{(\alpha_1 - \alpha_k)}{r^2}u.$$

It then follows that

$$< -\Delta u + u - h(x)u, u > < 0.$$
 (2.9)

Since u is orthogonal to φ , we obtain from (2.9) that $\dim H_{-} \geq 2$. This is a contradiction. Thus we obtain that $H_{0} = T_{u_{0}}(\mathcal{C}) \oplus H_{0,r}$ and then $\dim H_{0} \leq N+1$.

Here we recall that H has a decomposition $H = \widetilde{H} \oplus T_{u_{\infty}}(\mathcal{C})$ and then $H = \tau_x \widetilde{H} \oplus \tau_x T_{u_{\infty}}(\mathcal{C})$ for each $x \in \mathbb{R}^N$. Then since \mathcal{C}_{\pm} are smooth N-manifolds, we have that there exists $r_0 > 0$ such that

$$\tau_x((-1)^i u_\infty + B_{r_0}^0) \cap \tau_y(u_\infty + B_{r_0}^0) = \phi \tag{2.10}$$

for all $x, y \in R^N$ with $x \neq y$, and i = 0, 1. Here we consider a restriction $I^{\infty} \mid_{u_{\infty} + \widetilde{H}}$ of I^{∞} on $u_{\infty} + \widetilde{H}$. Then from Lemma 3.2 and Lemma 3.3, we have by Gromoll-Meyer theory[3] that there exists subspaces H_1 $H_{2,1}$, $H_{2,2}$ of \widetilde{H} , a positive number $r_1 < r_0$, a mapping $\beta \in C^1((H_{2,2} \cap B_{r_1}^0), R)$ and a homeomorphism $\psi : u_{\infty} + B_{r_1}^0 \to u_{\infty} + \widetilde{H}$ such that $\widetilde{H} = H_1 \oplus H_{2,1} \oplus H_{2,2}$ and

$$I^{\infty} \mid_{u_{\infty} + \widetilde{H}} (\psi(u)) = c - ||u_1||^2 + ||u_{2,1}||^2 + \beta(u_{2,2})$$
 (2.11)

for each $u \in u_{\infty} + B_{r_1}^0$ with $u = u_{\infty} + u_1 + u_{2,1} + u_{2,2}$, $u_1 \in H_1$, $u_{2,i} \in H_{2,i}$, i = 1, 2. It follows from Lemma 2.3 that $H_{2,2}$ is one dimensional. Noting that $T_{u_{\infty}}(M) \subset H_0 \oplus H_+$ and u_{∞} is the minimal point of I^{∞} on M, we have by choosing r_1 sufficiently small that $\beta(t\varphi_2)$ is strictly increasing as |t| increases in $[-r_1, r_1]$, where $\varphi_2 \in H_{2,2}$ with $||\varphi_2|| = 1$.

Since I^{∞} is even, it is obvious that I^{∞} has the form (2.11) on $-(u_{\infty} + B_{r_1}^0)$. We also note that for each $x \in R^N$, (2.11) holds for each $u \in \tau_x(u_{\infty} + B_{r_0}^0)$ with ψ replaced by $\tau_{-x} \circ \psi$.

Proof of Proposition 2.2. By the deformation property(cf. theorem 1.2 of Chang[3]) and the homotopy invariance of the homology groups, we have

$$\begin{split} &H_q(I_{c+\epsilon}^{\infty},I_{c-\epsilon}^{\infty}) \cong H_q(I_c^{\infty},I_{c-\epsilon}^{\infty}), \text{ and} \\ &H_q(I_c^{\infty} \backslash \mathcal{C},I_{c-\epsilon}^{\infty}) \cong H_q(I_{c-\epsilon}^{\infty},I_{c-\epsilon}^{\infty}) \cong 0. \end{split}$$

From the exactness of the singular homology groups,

$$H_{q}(I_{c}^{\infty} \backslash \mathcal{C}, I_{c-\epsilon}) \to H_{q}(I_{c}^{\infty}, I_{c-\epsilon}^{\infty}) \to H_{q}(I_{c}^{\infty}, I_{c}^{\infty} \backslash \mathcal{C})$$
$$\to H_{q-1}(I_{c}^{\infty} \backslash \mathcal{C}, I_{c-\epsilon}^{\infty}) \to \cdots$$

we find

$$0 \to H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty}) \to H_q(I_c^{\infty}, I_c^{\infty} \backslash \mathcal{C}) \to 0.$$

That is

$$H_q(I_c^{\infty}, I_{c-\epsilon}^{\infty}) \cong H_q(I_c^{\infty}, I_c^{\infty} \backslash \mathcal{C}).$$

Noting that $\cup \{\tau_x(\pm u_\infty + B_{r_1}^0) : x \in \mathbb{R}^N\}$ are disjoint open neighborhoods of \mathcal{C}_{\pm} respectively, and that I^{∞} is invariant under the translations τ_x , we find from the excision property and (2.11) that

$$H_{*}(I_{c+\epsilon}^{\infty}, I_{\epsilon}^{\infty})$$

$$\cong H_{*}(I_{c}^{\infty}, I_{c}^{\infty} \setminus \mathcal{C})$$

$$\cong H_{*}(I_{c}^{\infty} \cap (\cup_{i=\pm 1} \cup_{x} \tau_{x}(iu_{\infty} + B_{r_{1}}^{0})),$$

$$I_{c}^{\infty} \cap (\cup_{i=\pm 1} \cup_{x} \tau_{x}(iu_{\infty} + B_{r_{1}}^{0}) \setminus \mathcal{C}))$$

$$\cong H_{*}(u_{\infty} + B_{r_{1}}^{1}, (u_{\infty} + B_{r_{1}}^{1}) \setminus \{u_{\infty}\})$$

$$\oplus H_{*}(-u_{\infty} + B_{r_{1}}^{1}, (-u_{\infty} + B_{r_{1}}^{1}) \setminus \{u_{\infty}\})$$

$$\cong H_{*}([0, 1], \{0, 1\}) \oplus H_{*}([0, 1], \{0, 1\}).$$

This completes the proof.

- **3. Proof of Theorem 1.** We next consider a triple $(U, K, \epsilon) \subset H \times H \times R^+$ satisfying the following conditions:
- (1) $U \cap (-U) = \phi;$
- (2) $\{\tau_x u_\infty : |x| \ge r\} \subset intK$ for some r > 0;
- (3) $cl(I_{c+\epsilon} \cap K) \subset int(I_{c+\epsilon} \cap U);$
- (4) $H_{N-1}(I_{c+\epsilon} \cap U) = 1$, $H_1(I_{c+\epsilon} \cap U) = 0$;
- (5) I_{ϵ} is a strong deformation retract of $I_{c+\epsilon} \setminus (K \cup (-K))$;
- (6) $H_{N-1}((I_{c+\epsilon} \cap U)\backslash K) = 2$ or $H_0((I_{c+\epsilon} \cap U)\backslash K) \ge 2$ holds.

Proposition 3.1. There exists a triple $(U, K, \epsilon) \subset H \times H \times R^+$ which satisfies (1) - (6).

We omit the proof of Proposition 3.1.

Lemma 3.2. Suppose that there exist a triple $(U, K, \epsilon) \subset H \times H \times R^+$ satisfying (1)-(6). Suppose in addition that $H_{N-1}((I_{c+\epsilon} \cap U) \setminus K) \geq 2$. Then $H_N(I_{c+\epsilon}, I_{\epsilon}) \geq 2$.

Proof. We put $\widetilde{K} = K \cup (-K)$. Since I_{ϵ} is a strong deformation retract of $I_{c+\epsilon} \setminus \widetilde{K}$, we find that

$$H_q(I_{c+\epsilon}\backslash \widetilde{K}, I_{\epsilon}) \cong H_q(I_{\epsilon}, I_{\epsilon}) \cong 0.$$

Then we have from the exactness of the singular homology groups of the triple $(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}, I_{\epsilon})$ that

$$0 \to H_q(I_{c+\epsilon}, I_{\epsilon}) \to H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}) \to 0.$$

That is

$$H_q(I_{c+\epsilon}, I_{\epsilon}) \cong H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}).$$

From (1), we find

$$H_q(I_{c+\epsilon}, I_{c+\epsilon} \setminus \widetilde{K}) \cong H_q(W, W \setminus K) \oplus H_q(-W, (-W) \setminus (-K))$$

where $W = I_{c+\epsilon} \cap U$. Then since $H_{N-1}(W \setminus K) \geq 2$, we have from (4) and the exactness of the sequence

Lemma 3.3. Suppose that $(U, K, \epsilon) \subset H \times H \times R^+$ satisfies (1) - (6). Suppose in addition that $H_0(I_{c+\epsilon} \cap U) = H_0((I_{c+\epsilon} \cap U) \setminus K) = 1$. Then $H_1(I_{c+\epsilon}, I_{\epsilon}) = 0$ or $H_0(I_{c+\epsilon}, I_{\epsilon}) = 2$ holds.

Proof. From the argument in the proof of Proposition 3.2, we have that $H_1(I_{c+\epsilon}, I_{\epsilon}) \cong H_1(I_{c+\epsilon} \cap U, (I_{c+\epsilon} \cap U) \setminus K) \oplus H_N(I_{c+\epsilon} \cap U, (I_{c+\epsilon} \cap U) \setminus K)$. Then since $H_1(I_{c+\epsilon} \cap U) = 0$, and $H_0(I_{c+\epsilon} \cap U) = H_0((I_{c+\epsilon} \cap U) \setminus K) = 1$, the assertion follows from the exactness of the sequence (3.1) with q = 1.

We can now prove Theorem 1.

Proof of Theorem. Let (U, K, ϵ) be the triple constructed above. We have by Proposition 2.1 and Proposition 2.2 that $H_1(I_{c+\epsilon}, I_{\epsilon}) = 2$ and $H_q(I_{c+\epsilon}, I_{\epsilon}) = 0$ for $q \neq 1$. Now suppose that $(I_{c+\epsilon} \cap U) \setminus K$ is disconnected. Then since $H_0((I_{c+\epsilon} \cap U) \setminus K) \geq 2$, we find by Lemma 3.2 that $H_N(I_{c+\epsilon}, I_{\epsilon}) = 2$. This is a contradiction. On the other hand, if $U \setminus K$ is connected, then $H_0(U \setminus K) = 1$. Then by Lemma 3.3, we have $H_1(I_{c+\epsilon}, I_{\epsilon}) = 0$ or $H_0(I_{c+\epsilon}, I_{\epsilon}) = 2$. This is a contradiction. Thus we obtain that there exists a positive solution of (P).

REFERENCES

- [1] Berestycki H. & Lions P. L., Nonlinear scalar field equations, I, II, Archs ration Mech. Analysis 82(1982), 313-376.
- [2] Cao D-M, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equations on \mathbb{R}^N , Nonlinear Analysis TMA 15(1990), 1045-1052.
- [3] Chang K. C, indefinite dimensional Morse theory and its applications, Séminaire de Mathématiques Supérieures no 97, Univ. de Montreal (1985).
- [4] Ding W. Y. & Ni W. M., On the existence of positive solutions of a semilinear elliptic equation, Archs ration Mech. Analysis 91(1986), 283-307.
- [5] Kwong M. K., Uniquness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^N , Archs ration Mech. Analysis 105(1989), 243-266.
- [6] Lions P.L., The concentration-compactness principle in the calculus of variations, the locally compact case. Part I, Ann. Inst. H. Poincaré Analyses non Linéaire 1(1984), 109-145.
- [7] Lions P.L., The concentration-compactness principle in the calculus of variations, the locally compact case. Part II, Ann. Inst. H. Poincaré Analyses non Linéaire 1(1984), 223-283.
- [8] Spanier E, Algebraic Topology, McGraw-Hill, New York (1966).
- [9] Strauss W. A., Existence of solitary waves in higher dimensions, Communs math. Phys. 55(1977), 149-162.
- [10] Stuart C. A., Bifurcation from the essential spectrum for some noncompact nonlinearities, to appear

- [11] Zhu, Xi-Ping, Multiple entire solutions of a semilinear elliptic equation, Nonlinear Analysis TMA 12(1988), 1297-1316.
- [12] Zhu, Xi-Ping, A perturbation result on positive entire solutions of a semilinear elliptic equations, J. Diff. Equ. 92(1991), 163-178.