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北星学園大経 安藤 毅 (Tsuyoshi Ando)

Though the title of my talk at the RIMS meeting was Extreme points of an
intersection of matrix intervals, here the problem is treated in the Hilbert space
setting with title Extreme points of an intersection of operator intervals. The detail
with full proof will appear in the Proceedings of International Mathematics
Conference ’94, Kaohsiung, Taiwan, World Scienctific, 1996.

1. Introduction

Let $\mathcal{H}$ be a (complex) Hilbert space with inner product $\langle\cdot, \cdot\rangle$ , and $B(\mathcal{H})$ the
space of (bounded linear) operators on $\mathcal{H}$ . When $dim(\mathcal{H})=n<\infty$ , with respect
to a suitably chosen orthonormal basis, $B(\mathcal{H})$ is identified with the space of $n\cross n$

matrices.
Recall that an operator $A$ is selfadjoint if $A^{*}=A$ where $A^{*}$ is the adjoint of

$A$ , that is, $\langle A^{*}x, y\rangle=\langle x, Ay\rangle(x, y\in \mathcal{H})$ . Selfadjointness of $A$ is characaterized by
that $\langle x, A_{X}\rangle$ is real for ffi $x\in \mathcal{H}$ . Recall further that $A$ is positive (semidefinite) if
$\langle x, A_{X}\rangle\geq 0$ for all $x\in \mathcal{H}$ . Order relation $A\geq B$ for a pair of selfadjoint operators
$A,$ $B$ is defined as $A-B$ is positive. Therefore $A\geq 0$ means positivity of $A$ . We
write $A>B$ to mean that $A\geq B$ and $A-B$ is invertible, which is equivalent to
$A-B\geq\epsilon I$ for some $\epsilon>0$ where $I$ is the identity operator.

Given $A_{1},$ $A_{2},$
$\ldots,$

$\mathrm{A}_{m}\geq 0$ , let us observe the set

$\Delta(A_{1}, \mathrm{A}_{2}, \ldots, A_{m})=def\{X|0\leq X\leq A_{j}j=1,2, \ldots, m\}$ .

In particular, $\triangle(A)$ for $A\geq 0$ is the operator interval {X $|0\leq X\leq A$ }, so that
$\Delta(A_{1}, A_{2}, \ldots, A_{m})$ is an intersection of operator intervals;

$\triangle(A_{1}, \mathrm{A}_{2}, \ldots, A_{m})=\bigcap_{j=1}^{m}\triangle(A_{j})$ .

Since $\Delta\equiv\Delta(A_{1}, A_{2}, \ldots, A_{m})$ is a convex set, compact with respect to the weak
operator topology, according to the Krein-Milman theorem it has plenty many
extreme points. Recall that $X\in\Delta$ is extreme if $X=(Y+Z)/2$ for $Y,$ $Z\in\triangle$ is
possible only when $Y=Z=X$ . Let us denote by $ex\triangle\equiv ex\triangle(A_{1}, A_{2}, \ldots, A_{m})$ the
set of extreme points of $\Delta$ .

Our aim is a detailed study of the extreme points of $\Delta$ . In Section 3 we give
several necessary and sufficient conditins for $X\in\Delta$ to be an extreme point. In
Section 4 we present labelling of extreme points and in Section 5, under the as-
sumption $dim(\mathcal{H})<\infty$ and $m=2$ , we give a complete parametrization of extreme
points of $\triangle$ . The final part, Section 6, contains an algorithm of construction of an
extreme point, associated with arbitrarily given $X\in\triangle$ . In the $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}\backslash \mathrm{y}$ part,
Section 2, we recall various properties of two basic operations, necessary for our
study; parallel sum and short.
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This paper enlarges and extends the content of an unpublished manuscript
[Ao 89] , a part of which has been made public in $[\mathrm{P}91]$ .

2. Preliminaries

Given $A,$ $B>0$ , the operator

$A$ : $B=def_{()^{-1}}A^{-}1+B-1$

is called the parallel sum of $A$ and $B$ . This notion was first introduced in [AD 69]
as mathematical description of the impedance of parallel connection of electrical
networks. From the standpoint of quadratic forms the following variational descrip-
tion is more useful (see [AT 75]) and shows that parallel addition corresponds to
the so-called inf-convolution of two positive quadratic forms (see $[\mathrm{M}88]$ );

$\langle x, (A:B)_{X}\rangle=\inf\{\langle y, Ay\rangle+\langle z, B_{\mathcal{Z}}\rangle ; y+z=x\}$ $(x\in \mathcal{H})$ . (2.1)

Via (2.1) we can extend the definiton of parallel sum to any pair of positive op-
erators. This extended operation enjoyes the following properties (see [AT 75],
[NA 76], [PS 76] and [EL 89] $)$ ;

$A,$ $B\geq A$ : $B=B$ : $A$ , (2.2)

$(A : B)$ : $C=A$ : $(B : C)$ , (2.3)

$( \lambda A):(\mu A)=\frac{\lambda\mu}{\lambda+\mu}A$ $(\lambda, \mu>0)$ , (2.4)

$A_{1}\geq A_{2},$ $B_{1}\geq B_{2}\Rightarrow A_{1}$ : $B_{1}\geq A_{2}$ : $B_{2}$ , (2.5)

and more generally

$A_{k}\downarrow A,$ $B_{k}\downarrow B\Rightarrow A_{k}$ : $B_{k}.\downarrow A$ : $B$ , (2.6)

where $A_{k}\downarrow A$ say, means tht $A_{k}$ decreasingly $\mathrm{c}.$onver.ges to $A$ in strong oper,at.or-
topology as $karrow\infty$ , and

$(S^{*}AS)$ : $(S^{*}Bs)=S^{*}(A:B)S$ for invertible $S\in B(\mathcal{H})$ . (2.7)

In view of commutativity (2.2) and associativity (2.3) there is no confusion to
use

$\prod_{j=1}^{m}$ : $A_{j}\equiv$ $($ . . . $((A_{1}$ : $A_{2})$ : $A_{3})\cdots$ : $A_{m})$ .

Another notion we need is short (operation). For $A,$ $X\geq 0$ the sequence $(kX)$ : $A$

increases as $karrow\infty$ . Following [Ao 76] let us define $[X]A$ as its strong limit;

$[X]A= \lim_{karrow\infty}(d\mathrm{e}fkx)$ : A. (2.8)
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By (2.5) the following are clear from definition (2.8):

$A\geq[X]A$ , (2.9)

$A_{1}\geq A_{2}\geq 0,$ $X_{1}\geq X_{2}\Rightarrow[X_{1}]A_{1}\geq[X_{2}]A_{2}$ , (2.10)

and by (2.3) and (2.4)

$\alpha X_{1}\geq X_{2}\geq\beta X_{1}$ for some $\alpha,$ $\beta>0\Rightarrow[X_{1}]A=[X_{2}]A$ . (2.11)

Every positive operator $X\mathrm{a}\mathrm{d}_{1\dot{\mathrm{m}}}\mathrm{t}_{\mathrm{S}}$ a unique positive square-root $X^{1/2}$ , that is,
$X^{1/2}\geq 0$ and $(x^{1/2})^{2}=X$ . For general $X\in B(\mathcal{H})$ the positive square root of
$X^{*}X$ is called the modulus of $X$ and denoted by $|X|$ . When $X$ is selfadjoint, $|X|$

commutes with $X$ .
We use ran$(X)$ and $ker(X)$ to denote the range and the kernel of $X\in B(\mathcal{H})$

respectively. Then obviously

ran$(X)^{\perp}=ker(X^{*})$ and $ker(X)^{\perp}=\overline{ran(X^{*})}$ , (2.12)

where $\{$ $\}^{\perp}$ denotes the orthogonal complement. For $X\geq 0$ we have

$ker(X)=ker(X^{1/}2)$ and ran$(X)\subset ran(X^{1/2})\subset\overline{ran(X)}$. (2.13)

When $dim(\mathcal{H})<\infty$ , every subspace is closed, so that positive $A$ is invertible if
ran $(A)=\mathcal{H}$ , or equivalently $ker(A)=\{0\}$ .

For $A\geq 0$ and selfadjoint $X\in B(\mathcal{H})$

$A\geq X\geq-A\Leftrightarrow X=A^{1}/2CA1/2$ , (2.14)

where $C$ is a (selfadjoint) contraction, that is, $I\geq C\geq-I$ . If in addition ran$(C)\subset$

$\overline{ran(A)}$ is required, $C$ is uniquely determined. In a $\mathrm{s}\mathrm{i}_{\mathrm{I}\dot{\mathrm{m}}}1\mathrm{a}\mathrm{r}$ way $A\geq X\geq 0$ is
characterized by $I\geq C\geq 0$ in (2.14).

Range inclusion is characterized by an operator inequality (see $[\mathrm{D}66]$ ); for $X,$ $Y\in$

$B(\mathcal{H})$

ran$(X)\supset ran(Y)\Leftrightarrow\alpha XX^{*}\geq YY^{*}$ for some $\alpha\geq 0$ . (2.15)

A consequence of (2.14) is that the operation $A-[X]A$ is deterlnined only by
the range space $\mathcal{L}=ran(X^{1/2})$ . Therefore $[X]A$ will be called the short of $A$ to
the operator range $\mathcal{L}$ .

If $0\leq C,$ $D\leq I$ and ran$(C),$ $ran(D)\subset\overline{ran(A)}$ then we have

$(A^{1/2}cA1/2):(A^{1/2}DA1/2)=A^{1/1/}2(c:D)A2$ . (2.16)

(see [PS 76]).
If ran$(X)$ is closed, then by (2.13) $[X]A=[P]A$ where $P$ is the projection to

ran$(X)=ran(X^{1/2})$ . The shorted operator $[P]A$ is written in the block operator
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matrix with respect to the decompositon $\mathcal{H}=ran(P)\oplus ker(P)$ in the following
form (see [A 71]):

$[P]A=$ (2.17)

for

$A=\geq 0$ .

Here we remark that positivity of $A$ ensures that there is an operator $I\mathrm{c}^{\nearrow}$ from
$ker(P)$ to ran$(P)$ such that $||K||\leq 1$ and $A_{12}=A_{11}^{1/2}KA^{1/2}22$

’ and $A_{12}\cdot A_{22}^{-1}\cdot A_{21}$

should be understood as

$A_{12}\cdot A_{2}^{-1}\cdot A_{2}21def1=A_{1}^{1/2}K1K^{*/2}A_{11}$

The shorted operator $[P]A$ for a projection $P$ admits the following maximum
characterization, originally due to M. Krein (see [AT 75]);

$[P]A= \max\{Y|0\leq Y\leq A, ran(Y)\subset ran(P)\}$ . (2.18)

For general $X\geq 0$ we have

$[X]A=A^{1/2}QA^{1/2}$ , (2.19)

where $Q$ is the projection to the closure of $A^{-1/x}2ran()\equiv\{x\in \mathcal{H}|A^{1/2}x\in$

$ran(X)\}$ (see $[\mathrm{P}78]$ and $[\mathrm{K}84]$ ). Conversely for any projection $Q$ with ran$(Q)\subset$

$\overline{ran(A)}$

$A^{1/2}QA^{1/2}=[X]A$ with $X=A^{1/2}QA^{1/2}$ . (2.20)

It is known (see [Ao 76], $[\mathrm{P}78]$ and [EL 86]) that

$[X]A=A \Leftrightarrow A=\sup$ { $Y$ ; $0\leq Y\leq A$ and $Y\leq\lambda X$ for some $\lambda=\lambda(Y)\geq 0$ }
(2.21)

Sum and intersection of operator ranges are well determined (see [FW 71]): for
$A,$ $B\geq 0$

ran$(A)+ran(B)=ran(A^{2}+B^{2})^{1/2}$ , (2.22)

and
ran$(A)\cap ran(B)=ran(A^{2} : B^{2})^{1/2}$ . (2.23)

The range of a short to a closed subspace is also well determined (see [AT 75]):
for projection $P$

ran$([P]A)1/2=ran(P)\cap ran(A^{1/2})$ . (2.24)

It follows from (2.8) and (2.24) that for $A,$ $B\geq 0$

ran$(A^{1/2})\cap ran(B^{1/2})=\{0\}\Leftrightarrow A:B=0$ . (2.25)
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3. Characterizations

It is well known that $ex\triangle(I)$ for identity operator $I$ consists of all projections
(see [Sa 71, p.12]). Remark that a projection $X$ is characterized as a selfadjint
idempotiont, that is, $X(I-X)=0$ , and also that when $I\geq X\geq 0$ then $X(I-X)=$
$X$ : $(I-X)$ . By definition (2.8) $[X]I$ for every $X\geq 0$ coincides with the projection
to $\overline{ran(X)}$. These thogether can be formulated as various characterizations of
$ex\Delta(I)$ in the following Lemma (see [AT 88] and [EL 86]):

Lemma 1.

$ex\triangle(I)=$ { $P|$ projection $P$ }
$=\{[X]I|X\geq 0\}$

$=\{X\in\triangle(I)|X : (I-X)=0\}$ .

An easy consequence is that for a projection $P$

$ex\triangle(P)=\{Q|projeCtionQ\leq P\}$ .

Given $A\geq 0$ let $P$ be the projection $\mathrm{t}_{\mathrm{o}ran}\overline{(A)}$ . Then by (2.14) the affine map
$X\mapsto A^{1/2}XA1/2$ transforms bijectively $\Delta(P)$ to $\triangle(A)$ , so that the affine structure
of $ex\triangle(A)$ can be copied from Lemma 1 and its consequence via (2.16), by using
(2.19) and (2.20). Therefore we have a complete answer for the case $m=1$ (cf.
[AT 88], [EL 86], [AMT 92] and $[\mathrm{P}92])$ .

Theorem 2. For $A\geq 0$

$ex\triangle(A)=$ { $A^{1/2}PA1/2|projeCtionP$ such that ran $(P)\subset\overline{ran(A)}$}
$=\{[X]A|X\geq 0\}$

$=\{X\in\triangle(A)|X : (A-X)=0\}$ .

Remark that, in general, not every extreme point of $\triangle(A)$ is of the form $[P]A$

for a projection $P$ (see $[\mathrm{P}91]$ and [GM 94]).
The case $m>1$ is more delicate, but sitll can be derived from Lemlna 1 (cf.

[Ao 89] and $[\mathrm{P}91])$

Theorem 3. Let $A_{j}\geq 0(j=1,2, \ldots, m)$ and $X\in\triangle(A_{1}, \ldots, A_{n})l$ . Then the
following conditions on $X$ are mutually equivalent.

(i) $X\in ex\triangle(A_{1}, \ldots, A_{m})$ .

(ii) $X$ : $\{\prod_{j=1}^{m} : (A_{j}-X)\}=0$ .

(iii) ran$(X^{1/2}) \cap\bigcap_{j=1}^{m}ran(Aj-^{x_{\grave{J}}=0}1/2$ .

Also each of (i), (ii) and (iii) is equivalent to any of the following.

$(\mathrm{i}’)$ $X\in ex\triangle([X]A1, \ldots, [X]A_{m})$ .
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$(\mathrm{i}\mathrm{i}’)$ $X$ : $\{\prod_{j=1}^{m} : ([X]A_{j}-X)\}=0$ .

$(\mathrm{i}\mathrm{i}\mathrm{i}’)$ ran$(X^{1/2})\cap \mathrm{n}_{j=1}^{m}ran([X]A_{j}-x)1/2=0$ .

Theorem 4. Let $A_{j}\geq 0$ $(j=1,2, , , . , m)$ and $X\in\triangle(A_{1}, \ldots, A_{m})$ . Then each of
the following conditions implies any one (and all) in Theorem 3.

(iv) $\prod_{j=1}^{m}$ : $([X]A_{j}-x)=0$ .

(v) $ker(X)+ \sum_{j=1}^{m}ker(A_{j}-^{x)=\mathcal{H}}$ .

(vi) There are mutually commuting (not necesarily selfadjoint) idempotents
$Q_{j}\in B(\mathcal{H})(j=0,1,2, \ldots, m)$ such that

$Q_{i}Q_{jj}=\delta iQ_{j}(i,j=0,1,2, \ldots, m)$ , $\sum_{j=0}^{m}Q_{j}=I$ , and $X= \sum_{j=1}^{m}A_{i^{Q}}j$ .

When $dim(\mathcal{H})<\infty$ , each of (iv), (v) and (v) is $equ\dot{l}valent$ to any one (and all) in
Theorem 3.

4. Labelling

All characteerizations of extremality in Theorem 3 and Theorem 4 are of quali-
tative nature except (vi). Representation (vi), however, has a defect in using non-
selfadjoint summands. In fact, there is no guarantee of selfajointness of $A_{j}Q_{j}(j=$

$1,2,$ $\ldots,$
$m)$ .

In the finite dimensional case, however, the following theorem gives a labelling
of every extreme point $X$ of $\triangle(A_{1}, A_{2}, \ldots , A_{m})$ in terms of those in $\triangle(Y_{j})(j=$

$1,2,$ . $.-,$ $m$) where $Y_{j}(j=1,2, \ldots, m)$ are defined recursively from $X$ (cf. [Ao 89]
and $[\mathrm{P}91])$ .

Theorem 5. Let $A_{j}\geq 0(j=1,2, \ldots, m)$ and $X\in\triangle(A_{1}, \ldots, A_{m})$ . Then if there
are $X_{k}\geq 0(k=1,2, \ldots, m)$ such that

$X= \sum_{j=1}^{m}X_{j}$ and $X_{k} \in ex\triangle(A_{k}-\sum Xi)kj=1-1$ $(k=1,2, \ldots, m)$ , (4.1)

where $\sum_{j=1}^{k-1}Xj\equiv 0$ for $k=1$ , then $Xi_{\mathit{8}}$ an extreme point of $\triangle(A_{1}, \ldots , A_{m})$ .
Those $X_{k}(k=1,2, \ldots, m)_{f}$ satisfying (4.1) and the additional condition that for

some $1>\in>0$

$(1- \epsilon)(A_{k}-\sum_{j=1}Xj)\geq\sum^{m}X_{j}kj=k+1\equiv X-\sum_{j=1}^{k}x_{j}$ $(k=1,2, \ldots, m)$ (4.2)

are unique for $X$ if exist.
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When $dim(\mathcal{H})<\infty$ , existence of those $X_{k}(k=1,2, \ldots, m)$ , satisfying (4.1) and
(4.2), is always guaranteed for every $X\in ex\triangle(A_{1}, A_{2}, \ldots, A_{m})$ .

5. Parametrization

When $dim(\mathcal{H})<\infty$ and $m=2$ , in Theorem 5 $X_{1}$ is considered as a free
parameter for $X\in ex\triangle(A_{1}, A_{2})$ because $X_{2}=X-X_{1}$ . But the requirements
$(1-\epsilon)(A1-X_{1})\geq X-X_{1}$ for some $0<\epsilon<1$ and $X_{2}\in ex\triangle(A_{2}-x_{1})$ are still
restrictive. In this section, using a result from the theory of indefintie inner product
spaces, we shall present a more transparent parametrization of $ex\triangle(A_{1}, A_{2})$ along
an idea of [Ao 93].

Let $dim(\mathcal{H})<\infty$ and $m=2$ . For brevity let us write

$A$ $def=A_{1}$ and $B^{def}=A_{2}$ .

According to Theorem 4 extremity of $X\in\triangle(A, B)$ is characterized by

$([X]A-x)$ : $([X]B-^{x)0}=$ .

When restricted to ran$(X)=ran(X^{1/2})$ , each of $[X]A,$ $[X]B$ and $X$ is positive
invertible by (2.26). Therefore assuming $A,$ $B>0$ we shall consider parametriza-
tion of all invertible extreme points of $\Delta(A, B)$ . In $\mathrm{t}\mathrm{l}\dot{\mathrm{u}}\mathrm{s}$ case requirement for ex-
tremity of $X$ becomes

$(A-X)$ : ( $B-^{x)0}=$ . (5.1)
Let $A,$ $B>0$ , and

$C^{def}= \frac{1}{2}(A-B)$ .

If $A\geq B$ or $A\leq B$ then $\triangle(A, B)$ reduces to either $\triangle(B)$ or $\triangle(A)$ , and a
parametrization of $\triangle(A, B)$ is already known by Theorem 2. Therefore we shall
assume that $C$ is is indefinite, that is, $C\not\geq 0$ , and $C\not\leq 0$ . The space $\mathcal{H}$ is written
as an orthogonal sum

$\mathcal{H}=ran(C)\oplus ker(C)$ . (5.2)
Since

ran$(C)=ran(|c|-^{c)}\oplus ran(|C|+C)$ ,
we can also write

$\mathcal{H}=ran(|c|-^{c)\oplus ra}n(|C|+C)\oplus ker(c()$ . (5.3)
Let

$n+=dim(|C|-^{c)}$ and $n_{-}=dim(|c|+C)$ .

.Then $n\pm>0$ by indefiniteness of $C$ . The triple { $n_{+},$ $n_{-,n_{0}\}}$ with $n_{0}def=dimker(c)$
$1\mathrm{S}$ usually called the inertia of selfajoint $C$ . Fix an invertible operator $V\in B(\mathcal{H})$

such that with respect to decompositons (5.2) and (5.3)

$V=$ and $C=V^{*}\cdot\cdot V$, (5.4)

where $I_{0}$ and $I_{\pm}$ are the identity matrices of order $n_{0}$ and $n_{\pm}\mathrm{r}\mathrm{e}\mathrm{s}_{\mathrm{P}}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{V}\mathrm{e}1}\mathrm{y}$.
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Theorem 5. Let $dim(\mathcal{H})<\infty$ and let $A,$ $B>0$ , and let $C$ and $V$ be as in (5.4).
Then every invertible extreme point $X$ of $\triangle(A, B)$ is uniquely written in the form

$X= \frac{1}{2}(A+B)-V^{*}\cdot[^{D(I\mathrm{f})}0$ $00]\cdot V$, (5.5)

where $K$ is an $n_{-}\mathrm{x}n_{+}$ matrix with $K^{*}K<I_{+}$ and

$D(K)^{def}=[^{(I_{+}+}2I\iota^{\nearrow}(I_{+}-I\mathrm{t}K*)^{-}1I\acute{\backslash }\Lambda’*)(I_{+_{r}}-I\zeta*I’\mathrm{t})^{-}1$ $(I_{-}+\mathrm{A}’K^{*}2(I_{+}-Ic*Ii’)(I--Ii’I^{\nearrow}\mathrm{t})^{-})-1I’\mathrm{t}**1]$ . (5.6)

Conversely each $n_{-}\cross n_{+}$ matrix $K$ with $K^{*}K<I_{+}give\mathit{8}$ rise to an invertible
extreme point $X$ of $\triangle(A, B)$ by (5.5) and (5.6).

6. Construction

Let $A_{j}\geq 0(j=1,2, \ldots, m)$ . Oviously $0$ is an extreme point, which is $\leq X$

for all $X\in\triangle(A_{1}, A_{2,\ldots,\eta}A)$ . In tluis section along an idea of [Ao 93] we shall
present an algorithm of obtaining an extreme point $\tilde{X}$ such that $X\leq\tilde{X}$ for given
$X\in\triangle(A_{1,2}A, \ldots, A_{m})$ .

Theorem 6. Let $X\in\Delta(A_{1}, \ldots, A_{m})$ . Starting with $X_{0}def=X$ , define successibly

$X_{k+1}def=X_{k}+ \prod_{j=1}^{k}$ : $(A_{j}-X_{k})$ $(k=1,2, \ldots)$ . (6.1)

Then $\{X_{k}|k=1,2, \ldots\}$ is an increasing sequence in $\triangle(A_{1}, \ldots, A_{m})$ and its

(strong) limit $X_{\infty}= \lim_{karrow}\infty xdefk$ is an extreme point of $\triangle(A_{1}, \ldots, A_{m})$ such that

$X\leq X_{\infty}$ and $\prod_{j=1}^{m}$ : $(A_{j}-x_{\infty})=0$ . (6.2)

Remark that the algorithm in Theorem 6 produces all extreme points $X$ of
$\triangle(A_{1}, A_{2}, \ldots, A_{m})$ such that

$\prod m$ : $(A_{j}-x)=0$ ,
$j=1$

because for such $X$ it is immediate to see that all $X_{k}$ coincide with $X$ for all $k$ , and
$X_{\infty}=X$ .
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Theorem 7. Let $\dim(\mathcal{H})<\infty$ and $X\in\Delta(A_{1}, A_{2}, \ldots, A_{m})$ . Starting with $X_{0}de=^{f}$

$X$ , define successibly

$X_{k+1}def=X_{k}+j1 \prod_{=}^{k}$ : $([X]A_{j}-x_{k})$ $(k=1,2, \ldots)$ . (6.4)

Then $\{X_{k}|k=1,2, \ldots\}$ is an increasing sequence in $\Delta(A_{1}, \ldots, A_{m})$ and its limit
$X_{\infty}d \mathrm{e}=^{f}\lim_{k}arrow\infty^{X_{k}}$ is an extreme point of $\triangle(A_{1}, \ldots, A_{m})$ such that

$X\leq X_{\infty}=[X]X_{\infty}$ and $\prod_{j=1}^{m}$ : $([X_{\infty}]A_{j}-X_{\infty})=0$ . (6.5)

Conversely all extreme points are obtained in this way.
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