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Summary. We consider an inverse of the Berge maximum theorem. We also give
an application of our result to fixed point theory.

1 Introduction
The Berge maximum theorem appears often in the area of general equilibrium theory
and it is one of the fundamental principles of mathematical economics.

Theorem 1.1 (Berge) Let $X$ be a subset of $l$ -dimensional Euclidean space $R^{l}$ and
let $Y$ be a subset of $m$ -dimensional Euclidean space $R^{m}$ . Let $u$ : $X\cross \mathrm{Y}arrow R$

be continuous and let $S$ : $Xarrow Y$ be continuous and compact-valued. Then, the
correspondence $K:Xarrow Y$ defined by

$I \acute{\iota}(x)=\{y\in s(x):u(x, y)=\max_{\mathcal{Z}\in s(x)}u(x, z)\}$ , $x\in X$ (1)

is upper hemicontinuous and compact-valued.

The maximum theorem is often used in a specific situation such that the cor-
respondence $S$ is convex-valued and $u$ is quasi-concave in its second variable in
addition to the hypotheses of Theorem 1.1 in general equilibrium theory ([1, pages
47 and 72]). In this case, the conclusion of the maximum theorem is strengthened
to that the correspondence $I\{\mathrm{i}$ is upper hemicontinuous and compact convex-valued.

We shall consider an inverse of this special maximum theorem in Section 2.
Roughly speaking, we shall consider the following problem:

Does there exist a continuous function $u$ with some convexity which
produces $K$ with the equation (1), provided that a correspondence If is
upper hemicontinuous and compact convex-valued?

In section 3, we shall study relationship between the Kakutani fixed point theo-
rem and the Fan-Browder fixed point theorem. We shall derive the Kakutani fixed
point theorem from the Fan-Browder fixed point theorem by means of our result
obtained in Section 2.
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2 Result
Throughout this section, $X$ is a subset of $R^{l}$ . Let $B(x, \epsilon)$ and $\overline{B}(x, \epsilon)$ be open and
closed balls with center $x$ and radius $\epsilon$ , respectively. We need several lemmas to
prove our result. The first lemma is a special version of [5, Corollary 1] (see also the
remarks after [5, Corollary 1] $)$ .

Lemma 2.1 Let $K:Xarrow R^{m}$ be a nonempty compact convex-valued upper hemicon-
tinuous correspondence. Then there is a $\mathit{8}equence\{A_{n}\}_{n=1}^{\infty}$ of compact convex-valued
continuous correspondences $A_{n}$ : $Xarrow R^{m}$ such that, for each $x\in X$ ,

If $(x)\subset A_{n}(x)\subset A_{n’}(X)$ for $n>n’$

and

If$(x)= \bigcap_{n}\infty=1An(X)$ .

Lemma 2.2 Let $A:Xarrow R^{m}$ be a nonempty compact-valued lower hemicontinuous
$corre\mathit{8}pondence$ . Then, for any $x\in X$ and $\epsilon>0$ , there is $\delta>0$ such that

$A(x)\subset A(x’)+B(0, \epsilon)$ , $x’\in B(x,\delta)\cap X$ .

Proof Let $x\in X$ and $\epsilon>0$ . Since $A$ is lower hemicontinuous, for any $y\in A(x)$ ,
there is $\delta(y)>0$ such that $A(x’) \cap B(y, \frac{\epsilon}{2})\neq\emptyset$ for $x’\in B(x, \delta(y))\cap X$ . Since
$A(x)$ is compact, there are finite number of $y_{i}\in A(x)$ such that $\bigcup_{i}B(y_{i}, \frac{\epsilon}{2})\supset A(x)$ .
Set $\delta=\min_{i}\delta(y_{i})$ . Then we claim that $A(x)\subset A(x’)+B(0, \epsilon)$ for $x’\in B(x,\delta)$ .
Take $x’\in B(x, \delta)\cap X$ and $y\in A(x)$ . Then there is $y_{i}$ such that $B(y_{i}, \frac{\epsilon}{2})\ni y$ .
Since $x’\in B(x, \delta)\cap X\subset B(x, \delta(y_{i}))\cap X$ , we have $A(x’) \cap B(y_{i}, \frac{\epsilon}{2})\neq\emptyset$ , and there
is $z\in A(x’)$ such that $z \in B(y_{i}, \frac{\epsilon}{2})$ . Therefore, we have $y\in B(z, \epsilon)$ , and hence
$y\in A(x’)+B(0, \epsilon)$ , that is, $A(x)\subset A(x’)+B(0,6)$ . $\square$

Lemma 2.3 Let $A:Xarrow R^{m}$ be a nonempty compact-valued lower hemicontinuous
correspondence. $Then_{f}$ for any $\epsilon>0,$ $A^{\epsilon}$ : $Xarrow R^{m}$ defined by

$A^{\epsilon}(x)--A(x)+B(0, \epsilon)$ , $x\in X$

has open graph in $X\cross R^{m}$ .

Proof Take $(x, y)$ in $\mathrm{G}\mathrm{r}(A^{\epsilon})$ , where $\mathrm{G}\mathrm{r}(A^{\epsilon})$ denotes the graph of $A^{\epsilon}$ . Set $\epsilon’=$

$(\epsilon-d(y, A(X)))/3>0$ , where $d(y, A(x))$ denotes the distance between the point $y$ and
the set $A(x)$ . Then there is $\delta>0$ such that $Ax\subset Ax’+B(0, \epsilon’)$ for $x’\in B(x, \delta)\cap X$

by Lemma 2.2. If $(x’, y)’\in(B(x, \delta)\cap X)\cross B(y, \epsilon’)$ , then we have

$y’\in B(y, \epsilon’)\subset A(x)+B(0, \epsilon-2\mathcal{E})’+B(0, \epsilon’)\subset$

$\subset A(x’)+B(0, \mathcal{E}^{l})+B(0, \mathcal{E}-\underline{9}\epsilon’)+B(0, \epsilon’)\subset A(x’)+B(0, \mathcal{E})=A^{\epsilon}(x’)$ .
This means that $(x’, y’)\in \mathrm{G}\mathrm{r}(A^{\epsilon})$ , and $\mathrm{G}\mathrm{r}(A^{\epsilon})$ is open in $X\cross R^{m}$ . $\square$
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The following theorem is our main result.

Theorem 2.1 Let $X$ be a subset of $R^{l}$ . Let If : $Xarrow R^{m}$ be a nonempty compact
convex-valued upper hemicontinuous correspondence. Then there exists a continuous
function $v$ : $X\cross R^{m}arrow[0,1]$ such that

(i) $IC(x)= \{y\in R^{m} : v(x, y)=\max_{z\in R^{m}}v(x, z)\}$ for any $x\in X_{i}$

(ii) $v(x, y)$ is quasi-concave in $y$ for any $x\in X$ .
Proof Let $D$ be the set of all positive dyadic rational numbers, that is, the set of
all numbers of the form $n/2^{n’}$ for positive integers $n$ and $n’$ . We construct a family
$\{G_{t}\}_{t\in D}$ of correspondences from $X$ to $R^{m}$ as follows. For $t\in D$ with $t\geq 1$ , set
$G_{t}(x)=R^{m}$ for all $x\in X$ . For $i\in D$ with $0<t<1$ , take its binary expansion

$t= \frac{t_{1}}{\underline{9}}+\frac{t_{2}}{2^{2}}+\cdots+\frac{t_{n}}{2^{n}}$ , where $t_{i}=0$ or 1,

an$d$ set $l(t)= \min\{i:t_{i}=1\}$ . Define $G_{t}$ : $Xarrow R^{m}$ by

$G_{t}(x)=A_{l(t)}(X)+B(0, t)$ , $x\in X$

by means of the sequences $\{A_{n}\}_{n=1}^{\infty}$ of correspondences obtained in Lemma 2.1. It
is easily seen that $G_{t}$ is convex-valued and $\overline{G_{s}(x)}\subset G_{t}(x)$ for $s<t$ . Define a
correspondence $G_{t}’$ : $xarrow Rm$ for each $t\in D$ by

$G_{t}’(x)=\overline{G_{t}(x)}=A_{l(t)}(x)+\overline{B}(0, t)$ , $x\in X$ .
Since $G_{t}’$ is compact convex-valued and continuous, it has closed graph, and hence,
we have $\mathrm{G}\mathrm{r}(G_{t}’)=\overline{\mathrm{G}\mathrm{r}(c_{\tau_{t}})}$ . Therefore, we have

$\overline{\mathrm{G}\mathrm{r}(G_{s})}\subset \mathrm{G}\mathrm{r}(G_{t})$ for $s<t$ .
On the other hand, the correspondence $G_{t}$ has open graph by Lemma 2.3 because
$A_{n}$ is lower hemicontinuous.

Define a function $w$ : $X\cross R^{m}arrow[0,1]$ by
$w(x, y)= \inf\{t\in D:(x,y)\in \mathrm{G}\mathrm{r}(G_{t})\}$ .

Then $w$ is continuous and we have

$\{y\in R^{m} : w(x, y)\leq s\}=\mathrm{n}c_{t}l>s(x)$

for any $s\in R$ and $x\in X$ by [ , Lemma 4.2 and Lemma 4.3]. Therefore, $w$ is
quasi-convex in its second variable. We have

$IC(x)= \{y\in R^{m} : w(x, y)=\min_{z\in R^{m}}w(x, z)\}$

for all $x\in X$ because

$I\zeta(x)=\cap^{\infty}n=1A_{n}(_{X)}=\cap t\in Dc\mathrm{T}t(X)=\mathrm{t}y\in R^{m}$ : $w(x, y)=0\}$ .

Therefore, $v=-w+1$ is the desired function. $\square$
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3Application to Fixed Point Theory
We consider two fixed point theorems for correspondences which play crucial roles in
general equilibrium theory. One is the Kakutani fixed point theorem and the other
is the Fan-Browder fixed point theorem (see, for example, [1] and [6]):

Theorem 3.1 (Kakutani) Let $C$ be a compact convex subset of $R^{m}$ . Let $F$ :
$Carrow C$ be a nonempty closed convex-valued upper hemicontinuous correspondence.
Then there is a point $x_{0}\in C$ such that $x_{0}\in F(x_{0})$ .

Theorem 3.2 (Fan-Browder) Let $C$ be a compact convex subset of $R^{m}$ . Let $\varphi$ :
$Carrow C$ be a nonempty convex-valued correspondence such that $\varphi^{-1}(y)i_{\mathit{8}}$ open in $C$

for $y\in C$ . Then there is a point $x_{0}\in C$ such that $x_{0}\in\varphi(x_{0})$ .

We show that the Kakutani fixed point theorem can be derived from the Fan-
Browder fixed point theorem with the aid of Theorem 2.1. The method of the
derivation is inspired by the simple proofs of the K-K-M-S theorem in [3] and [4].

Derivation of Kakutani from Fan-Browder
Let $F$ be a correspondence satisfying the hypothesis of the Kakutani fixed point
theorem. Thanks to Theorem 2.1, we can find a continuous function $v:C\cross R^{m}arrow$

$[0,1]$ such that $F(x)= \{y\in R^{m} : v(x, y)=\max_{z\in R^{m}}v(X, Z)\}$ for any $x\in C$ and $v$

is quasi-concave in its second variable. Since $F(x)\subset C$ , we have $F(x)=\{y\in C$ :
$v(x, y)= \max_{z\in C}v(x, z)\}$ . Define $\varphi$ : $Carrow C$ by

$\varphi(x)=\{y\in C : v(x, x)<v(x, y)\}$ , $x\in C$ .

Then the correspondence $\varphi$ satisfies all of the hypotheses of the Fan-Browder fixed
point theorem but the nonemptiness of its values. It is obvious that $\varphi$ has no fixed
points. Therefore, the Fan-Browder fixed point theorem assures us the existence of
a point $x_{0}$ such that $\varphi(x_{0})=\emptyset$ . This means that $v(x_{0},$ $x_{0)}= \max_{z\in C}v(x_{0}, z)$ , that
is, $x_{0}\in F(x\mathrm{o})$ . $\square$

4 Concluding Remark
We can interpret Theorem 1.1 in consumption models as follows: the set $X$ is the
space of price-wealth pairs, the function $u$ is the utility function of a consumer, and $S$

is the budget constraint of the consumer. Then If is the demand correspondence of
the consumer. Thanks to Theorem 2.1, we can represent the demand correspondence
If by $a$ function $v$ alone. Thus all the information of the consumers such as his
utility and budget constraint is integrated in the function $v$ in Theorem 2.1. The
$\mathrm{s}a$me argument holds in production models and the supply correspondence can be
expressed by a single two-variable real-valued function.
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