<table>
<thead>
<tr>
<th>Title</th>
<th>Second-order directional derivatives of sup-type functions (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawasaki, Hidefumi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1996), 939: 23-29</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60092</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Second-order directional derivatives of sup-type functions

Sup-型関数の2次の方向微分について

Hidefumi Kawasaki(Graduate School of Mathematics, Kyushu Univ.)

川崎英文 (九州大学大学院数理学研究科)

Abstract

In this paper, we deal with the following sup-type function:

\[S(x) := \sup_{t \in T} G(x(t), t) \quad x \in X, \tag{1} \]

where \(T \) is a compact metric space, \(X \) is a subspace of the set of all \(n \)-dimensional vector-valued continuous functions \(C(T)^n \) equipped with the uniform norm. We denote by \(G_x \) and \(G_{xx} \) the gradient (row) vector and the Hesse matrix of \(f \) w.r.t. \(x \), respectively, and assume them to be continuous on \(R^n \times T \). This sup-type function is induced from a phase constraint

\[G(x(t), t) \leq \forall t \in T \]

which appears in variational problems and optimal control problems [15].

On the other hand, another sup-type function has been deeply studied:

\[S_0(x) := \sup_{t \in T} G(x(t), t) \quad x \in R^n, \tag{2} \]

Clarke[1], Correa and Seeger[2], Danskin [3], Dem’yanov and Malozemov[4] Demyanov and Zabrodin[5], Hettich and Jongen[6], Ioffe[7], Kawasaki[8][9] [10][11][13], Shiraishi[17], Seeger[16], Wetterling[18]. We encounter this sup-type function in Tchebycheff approximation. When \(T \) depends on \(x \), the minimization problem of \(S_0(x) \) becomes a parametric optimization problem. To tell the truth, \(S_0(x) \) is a special case of \(S(x) \). Indeed, if we take as \(X \) \(\{x \in C(T)^n \mid x(t) \equiv \text{constant vector} \in R^n \} \), then \(S(x) \) reduces to \(S_0(x) \). So \(S(x) \) inherits a lot of properties from \(S_0(x) \).
論文の概要

次の Sup-型関数の 1 次と 2 次の方向微分について考察する。

\[S(x) := \sup_{t \in T} G(x(t), t) \quad x \in X, \quad (3) \]

ただし T はコンパクト距離空間, X は n 次元ベクトル値連続関数全体 C(T)^n の部分空間とする。

この Sup-型関数は変分問題や最適制御問題の相条件

\[G(x(t), t) \leq \forall_{t \in T} \]

を考察するとき出会う。本論文では、この相条件から包絡線が生成されるかどうかを調べるために、sup-型関数 S(x) の 2 次の方向微分を表す公式を与える。

一方、従来よく研究されてきた Sup-型関数は次の関数である。

\[X \quad (x) := \sup_{t \in T} G(x, t) \quad x \in R^n, \quad (4) \]

この関数はチェビシェフ近似問題と密接に関係する。さらに、集合 T が x に依存してよいとすれば、X(x) の最小化問題はパラメトリック最適化問題になる。S(x) が S0(x) と本質的に異なる点は、後者は x と t が独立に動けるのに対し、前者は x が t に依存することである。しかしながら、S0(x) は S(x) のスペシャルケースと見なすこともできる。つまり、X として n 次元ベクトル値定数関数全体 \(\{x(t) \equiv a \mid a \in R^n \} \) をとればよい。従って、S(x) は S0(x) の多くの性質を受け継ぐことになる。結論を先に述べると、相条件からも包絡線が生成される。

In the following, we denote by T(x) the set of all extreme points \(G(x(\cdot), \cdot) \), that is,

\[T(x) := \{ t \in T ; G(x(t), t) = S(x) \}, \quad x \in C(T)^n. \]

Theorem 1 The function S(x) is continuous.

Theorem 2 The function S(x) is directionally differentiable in any direction \(y \in X \), and its directional derivative is given by

\[S'(x; y) = \max \{ G_x(x(t), t)y(t); t \in T(x) \}. \quad (5) \]
Applying Theorem 2 to the sup-type function induced from the one-sided phase constraint:

\[s(t) \leq x(t) \quad \forall t, \quad (6) \]

where \(s(t) \) is a given continuous function, we get the following result:

Corollary 1 Let \(s \in C(T) \). Take \(G(x,t) := s(t) - x \) for any \(x \in \mathbb{R} \) and \(t \in T \). Then

\[S'(x;y) = - \min_{t \in \tau(x)} y(t). \]

Taking constant functions as \(x(t) \) and \(y(t) \) in Theorem 2, we get Danskin’s formula.

Corollary 2 (Danskin[3]) The function \(S_0(x) \) is directionally differentiable in any direction \(y \in \mathbb{R}^n \) and its directional derivative is given by

\[S_0'(x;y) = \max \{ G_x(x,t)y; t \in T(x) \}. \quad (7) \]

Next, we consider a second-order directional derivative of \(S(x) \).

Definition 1 The upper second-order directional derivative of \(S(x) \) at \(x \) in the direction \(y \) is defined by

\[S''(x;y) = \limsup_{\varepsilon \to +0} \frac{S(x + \varepsilon y) - S(x) - \varepsilon S'(x;y)}{\varepsilon^2} \quad (8) \]

Definition 2 ([9]) For any functions \(u, v \in C(T) \) satisfying

\[\begin{align*}
 u(t) &\geq 0 \quad \forall t \in T, \\
 v(t) &\geq 0 \quad \text{if } u(t) = 0,
\end{align*} \quad (9) \]

we define a function \(E : T \to [-\infty, +\infty] \) by

\[E(t) := \begin{cases}
 \sup \left\{ \limsup_{t_n} \frac{v(t_n)^2}{4u(t_n)} ; \{t_n\} \text{ satisfies (11)} \right\}, & \text{if } t \in T_0, \\
 0 & \text{if } u(t) = v(t) = 0 \text{ and } t \not\in T_0, \\
 -\infty & \text{otherwise},
\end{cases} \quad (10) \]

\[T_0 := \left\{ t \in T; \exists t_n \to t \text{ s.t. } u(t_n) > 0, \frac{v(t_n)}{u(t_n)} \to +\infty \right\}. \quad (11) \]
\textsc{Theorem 3} \textit{Let }x\textit{ and }y\textit{ be arbitrary functions in }C(T)^n\textit{. Then it holds that}
\[S''(x;y) = \max \left\{ \frac{y^T S_x(x(t),t)y(t)}{2} + E(t) \mid t \in T(x;y) \right\}, \tag{12} \]
where \(T(x;y) := \{ t \in T(x) \mid S'(x;y) = G_{x}(x(t), t)y(t) \} \) and \(E(t) \) is defined via Definition 2 by taking
\[u(t) = S(x) - G(x(t),t), \quad v(t) = S'(x;y) - G_{x}(x(t), t)y(t). \tag{13} \]

Taking constant functions as \(x(t) \) and \(y(t) \) in Theorem 3, we get the following formula due to [9].

\textsc{Corollary 3} \textit{Let }x\textit{ and }y\textit{ be arbitrary points in }R^n\textit{. Then it holds that}
\[S''(x;y) = \max \left\{ \frac{y^T G_{xx}(x,t)y}{2} + E(t) \mid t \in T(x;y) \right\}, \tag{14} \]
where \(E(t) \) is defined via Definition 2 by taking
\[u(t) = S(x) - G(x, t), \quad v(t) = S'(x;y) - G_{x}(x(t), t)y. \tag{15} \]

We proved in [9] and [10] that an envelope is formed from \(G(x,t) \) when \(E(t) > 0 \) at some point \(t \). Similarly, an envelope is formed from \(G(x(t),t) \) when \(E(t) > 0 \) at some \(t \).

\textbf{Example} We can find an envelope even in the simplest one-sided phase constraint:
\[x(t) \geq 0 \quad \forall t, \]
that is, \(G(x,t) = -x \). Let \(x(t) := t^2, \; T := [-1,1] \) and \(y(t) := -2t \). Then
\[\phi(\varepsilon) := S(x + \varepsilon y) \]
\[= \max_{|t| \leq 1} \{-x(t) - \varepsilon y(t)\} \]
\[= \max_{|t| \leq 1} \{2t\varepsilon - t^2\} \]
\[= \begin{cases} \varepsilon^2 & |\varepsilon| \leq 1 \\ |2\varepsilon| - 1 & |\varepsilon| \geq 1 \end{cases} \]
For each \(t \in [-1,1] \), the function \(2t\varepsilon - t^2 \) is affine w.r.t. \(\varepsilon \). However, these affine functions form the envelope \(\phi(\varepsilon) = \varepsilon^2 \) near \(\varepsilon = 0 \).
It is clear from the definition of the upper second-order directional derivative that
\[
\overline{S}''(x; y) = \limsup_{\epsilon \to 0} \frac{\phi(\epsilon) - \phi(0) - \epsilon \phi'(0)}{\epsilon^2} = 1.
\]
On the other hand, the functions \(u(t)\) and \(v(t)\) defined by (13) become
\[
u(t) = S'(x; y) - G_x(x(t), t)y(t) = -y(0) - (-y(t)) = -2t,
\]
respectively. Hence
\[
E(t) = \begin{cases}
1, & t = 0, \\
-\infty, & t \neq 0.
\end{cases}
\]
Since \(G(x, t)\) is affine w.r.t. \(x\), its second partial derivative vanishes. So the right hand side of (12) equals 1.

參考文献

