<table>
<thead>
<tr>
<th>Title</th>
<th>Second-order directional derivatives of sup-type functions (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawasaki, Hidefumi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1996, 939: 23-29</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60092</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Second-order directional derivatives of sup-type functions

Sup-型関数の2次の方向微分について

Hidefumi Kawasaki (Graduate School of Mathematics, Kyushu Univ.)

川崎英文 (九州大学大学院数理学研究科)

Abstract

In this paper, we deal with the following sup-type function:

\[S(x) := \sup_{t \in T} G(x(t), t) \quad x \in X, \] \hspace{1cm} (1)

where \(T \) is a compact metric space, \(X \) is a subspace of the set of all \(n \)-dimensional vector-valued continuous functions \(C(T)^n \) equipped with the uniform norm. We denote by \(G_x \) and \(G_{xx} \) the gradient (row) vector and the Hesse matrix of \(f \) w.r.t. \(x \), respectively, and assume them to be continuous on \(R^n \times T \). This sup-type function is induced from a phase constraint

\[G(x(t), t) \leq \forall t \in T \]

which appears in variational problems and optimal control problems [15].

On the other hand, another sup-type function has been deeply studied:

\[S_0(x) := \sup_{t \in T} G(x, t) \quad x \in R^n, \] \hspace{1cm} (2)

Clarke[1], Correa and Seeger[2], Danskin [3], Dem'yanov and Malozemov[4] Dem'yanov and Zabrodin[5], Hettich and Jongen[6], Ioffe[7], Kawasaki[8][9][10][11][13], Shiraishi[17], Seeger[16], Wetterling[18]. We encounter this sup-type function in Tchebycheff approximation. When \(T \) depends on \(x \), the minimization problem of \(S_0(x) \) becomes a parametric optimization problem. To tell the truth, \(S_0(x) \) is a special case of \(S(x) \). Indeed, if we take as \(X \) \(\{ x \in C(T)^n \mid x(t) \equiv \text{constant vector} \in R^n \} \), then \(S(x) \) reduces to \(S_0(x) \). So \(S(x) \) inherits a lot of properties from \(S_0(x) \).
論文の概要

次の Sup-型関数の1次と2次の方差微分について考察する。

\[S(x) := \sup_{t \in \tau} G(x(t), t) \quad x \in X, \quad (3) \]

ただし \(T \) はコンパクト距離空間, \(X \) は \(n \) 次元ベクトル値連続関数全体
\(C(T)^n \) の部分空間とする。

この Sup-型関数は変分問題や最適制御問題の相条件

\[G(x(t), t) \leq \forall_{t \in T} \]

を考察するとき出会う。本論文では、この相条件から包絡線が生成されるかどうかを調べるために、sup-型関数 \(S(x) \) の2次の方差微分を表す公式を与える。

一方、従来よく研究されてきた Sup-型関数は次の関数である。

\[S_0(x) := \sup_{t \in T} G(x, t) \quad x \in R^n, \quad (4) \]

この関数はチェビシェフ近似問題と密接に関係する。さらに、集合 \(T \) が \(x \) に依存してよいとすれば、\(S_0(x) \) の最小化問題はパラメトリック最適化問題になる。\(S(x) \) が \(S_0(x) \) と本質的に異なる点は、後者は \(x \) と \(t \) が独立に動けるのに対し、前者は \(x \) が \(t \) に依存することである。しかしながら、\(S_0(x) \) は \(S(x) \) のスペシャルケースと見なすこともできる。つまり、\(X \) として \(n \) 次元ベクトル値変数関数全体 \(\{x(t) = a | a \in R^n\} \) をとればよい。従って、\(S(x) \) は \(S_0(x) \) の多くの性質を受け継ぐことになる。結論を先に述べると、相条件からも包絡線が生成される。

In the following, we denote by \(T(x) \) the set of all extreme points \(G(x(\cdot), \cdot) \), that is,

\[T(x) := \{t \in T ; G(x(t), t) = S(x)\}, \quad x \in C(T)^n. \]

Theorem 1 The function \(S(x) \) is continuous.

Theorem 2 The function \(S(x) \) is directionally differentiable in any direction \(y \in X \), and its directional derivative is given by

\[S'(x; y) = \max\{G_x(x(t), t)y(t); t \in T(x)\}. \quad (5) \]
Applying Theorem 2 to the sup-type function induced from the one-sided phase constraint:
\[s(t) \leq x(t) \quad \forall t, \]
where \(s(t) \) is a given continuous function, we get the following result:

Corollary 1 Let \(s \in C(T) \). Take \(G(x, t) := s(t) - x \) for any \(x \in \mathbb{R} \) and \(t \in T \). Then
\[S'(x; y) = - \min_{t \in T(x)} y(t). \]

Taking constant functions as \(x(t) \) and \(y(t) \) in Theorem 2, we get Danskin’s formula.

Corollary 2 (Danskin[3]) The function \(S_0(x) \) is directionally differentiable in any direction \(y \in \mathbb{R}^n \) and its directional derivative is given by
\[S_0'(x; y) = \max \{ G_x(x, t)y; t \in T(x) \}. \]

Next, we consider a second-order directional derivative of \(S(x) \).

Definition 1 The upper second-order directional derivative of \(S(x) \) at \(x \) in the direction \(y \) is defined by
\[\overline{s}''(x; y) = \lim_{\epsilon \rightarrow 0^+} \sup_{\epsilon} \frac{S(x + \epsilon y) - S(x) - \epsilon S'(x; y)}{\epsilon^2} \]

Definition 2 ([9]) For any functions \(u, \ v \in C(T) \) satisfying
\[\left\{ \begin{array}{l} u(t) \geq 0 \quad \forall t \in T, \\ v(t) \geq 0 \quad \text{if } u(t) = 0, \end{array} \right. \]
we define a function \(E : T \rightarrow [-\infty, +\infty] \) by
\[E(t) := \begin{cases} \sup \left\{ \limsup_{x(u(t))} \frac{v(t_n)}{u(t_n)}; \{t_n\} \text{ satisfies (11)} \right\}, & \text{if } t \in T_0, \\ 0 & \text{if } u(t) = v(t) = 0 \text{ and } t \not\in T_0, \\ -\infty & \text{otherwise}, \end{cases} \]
(10)

\[T_0 := \left\{ t \in T; \exists t_n \rightarrow t \text{ s.t. } u(t_n) > 0, \frac{v(t_n)}{u(t_n)} \rightarrow +\infty \right\}. \]
(11)
Theorem 3 Let x and y be arbitrary functions in $C(T)^n$. Then it holds that
\[
\overline{S}''(x;y) = \max \left\{ \frac{y(t)^T G_{xx}(x(t), t)y(t)}{2} + E(t) \mid t \in T(x;y) \right\},
\]
where $T(x;y) := \{ t \in T(x) \mid S'(x;y) = G_x(x(t), t)y(t) \}$ and $E(t)$ is defined via Definition 2 by taking
\[
u(t) = S(x) - G(x(t), t), \quad \nu(t) = S'(x;y) - G_x(x(t), t)y(t).
\]

Taking constant functions as $x(t)$ and $y(t)$ in Theorem 3, we get the following formula due to [9].

Corollary 3 Let x and y be arbitrary points in \mathbb{R}^n. Then it holds that
\[
\overline{S}''(x;y) = \max \left\{ \frac{y^T G_{xx}(x,t)y}{2} + E(t) \mid t \in \tau(x;y) \right\},
\]
where $E(t)$ is defined via Definition 2 by taking
\[
u(t) = S(x) - G(x(t), t), \quad \nu(t) = S'(x;y) - G_x(x(t), t)y.
\]

We proved in [9] and [10] that an envelope is formed from $G(x,t)$ when $E(t) > 0$ at some point t. Similarly, an envelope is formed from $G(x(t), t)$ when $E(t) > 0$ at some t.

Example We can find an envelope even in the simplest one-sided phase constraint:
\[
x(t) \geq 0 \ \forall t,
\]
that is, $G(x,t) = -x$. Let $x(t) := t^2$, $T := [-1,1]$ and $y(t) := -2t$. Then
\[
\phi(\epsilon) := S(x + \epsilon y)
= \max_{|t| \leq 1} \{-x(t) - \epsilon y(t)\}
= \max_{|t| \leq 1} \{2t\epsilon - t^2\}
= \begin{cases}
\epsilon^2 & |\epsilon| \leq 1 \\
|2\epsilon| - 1 & |\epsilon| \geq 1
\end{cases}
\]
For each $t \in [-1,1]$, the function $2t\epsilon - t^2$ is affine w.r.t. ϵ. However, these affine functions form the envelope $\phi(\epsilon) = \epsilon^2$ near $\epsilon = 0$.

It is clear from the definition of the upper second-order directional derivative that
\[
\overline{S}''(x; y) = \limsup_{\varepsilon \to 0} \frac{\phi(\varepsilon) - \phi(0) - \varepsilon \phi'(0)}{\varepsilon^2} = 1.
\]
On the other hand, the functions \(u(t) \) and \(v(t) \) defined by (13) become
\[
\begin{align*}
 u(t) &= S(x) - G(x(t), t) = 0 - (-x(t)) = t^2, \\
 v(t) &= S'(x; y) - G_x(x(t), t)y(t) = -y(0) - (-y(t)) = -2t,
\end{align*}
\]
respectively. Hence
\[
E(t) = \begin{cases}
1, & t = 0, \\
-\infty, & t \neq 0.
\end{cases}
\]
Since \(G(x, t) \) is affine w.r.t. \(x \), its second partial derivative vanishes. So the right hand side of (12) equals 1.

參考文献

