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1. Introduction. In this paper we give some new necessary and sufficient conditions
for the uniform asymptotic stability of the zero solution of the linear differential-difference

equation with N delays

N
) =A) z(t—m) (1.1)
k=1
where A is a 2 X 2 constant matrix.

Among many authors investigating the stability of delay differential equations, Stépén][1]

has shown that the zero solution of the scalar delay differential equation with two delays
Z'(t) = —a(z{t—n)+z(t— 7)), (1.2)

where a > 0, 7,72 > 0, 71 + 72 > 0, is uniformly asymptotically stable if and only if

2a(m1 + T2) cos (: ; Z g) < . (1.3)

Also in [2], the first author has recently shown that the zero solution of the linear delay

differential equation with a positive constant delay
z'(t) = —pR(0)z(t — 7), (1.4)

where p is a real constant and R(6) represents a 2 X 2 matrix

cos@@ —sinf

sinf cos#
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with |0] < %, is uniformly asymptotically stable if and only if
s
0<pr< 5~ |9). (1.5)

The purpose of this paper is to obtain some new results by merging above results
together and increasing delays to N. With regard to N delays, we consider the case {7}

is an arithmetric sequence, that is,
m=7+(k—-—1) with 7>0 and | >0 fork=1,2,---,N.

This idea came up since two delays as in (1.2) always form an arithmetric sequence. Also,
by the transfomation z(t) = Py(t) with an appropriate regular matrix P, we can rewrite
(1.1) as
‘ N
y'(t) =P AP} y(t—m).
k=1
Consequently, we consider the equation (1.1) where the matrix A is either of the following

two matrices:

(I) the case matrix A has real eigenvalues a; and aq,

A=-
0 a

where a1, a2, and b are real numbers.

(IT) the case matrix A has complex eigenvalues p(cos @ & sin §),
cosf —sinf
A=—pR(6) =

sinf cos@

where p is a real number and |0| < g

For the case (I), we have

Theorem 1.1. The zero solution of (1.1) is uniformly asymptotically stable if and only
of

a1,az > 0
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and

sin N T
a(T1+TN) T1+7'N2 <

2 . l e
sin —
T+ 782

where a = max{ay, az}.
For the case (II), we have
Theorem 1.2. The zero solution of (1.1) is uniformly asymptotically stable if and only
if
p>0 (1.6)

and

Nl T
sin < (— - |0[))
p(T1+TN) 7'1+TN 2 <E—l0| (17)

2 ) l T 2
sm( (———|0|>>
7'1+7'N 2

If # = 0 and N = 2, the condition (1.7) coincides with (1.3). If N = 1, the condition

(1.7) also coincides with (1.5). The proof of Theorem 1.2, very similar to the proof of

Theorem 1.1, will be only given in the next section.
2. Proof. First, the following proposition stands.

Proposition 2.1.

p(m+7n) + ™) Z (____TN_—_’°+1 (g — 19|)> < g —19] (2.1)

T1+’7'N

and (1.7) are equivalent.

Proof. On the formula concerning with the sum of cosines

N cos (x + %(N - 1)y> sin —;—Ny
> cos(z+ (k—1)y) = T ,
k=1 sin Ey
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if

__(N—l)l(w_ ) 2 (77_ )
= 1+ TN 2 I0| ’ y_T1+TN 2 |0I ’

then we have the fraction part of sines in (1.7) and the summation part of cosines in (2.1).

Thus, (1.7) and (2.1) are equivalent. . 0

In the proof of Theorem 1.2 we use condition (2.1) instead of (1.7).
The theorem is proved by using the fact that the zero solution of (1.1) is uniformly

asymptotically stable if and only if all the roots of the characteristic equation of (1.1)

N
D(X) =det [AI+pR(8) > e™™| =0 (2.2)
k=1

lie in the left half of the complex plane, that is, the real part of any characteristic root
of (2.2) is negative. Thus, we investigate the characteristic roots of (2.2) to prove the

theorem.

Proof of Theorem 1.2. (sufficiency) Let

N
pr(A) =X+ pe? Y e (2.3)
k=1
and
, N
p-(A) =X+ pe @D e, » (2.4)
k=1 '

The characteristic equation of (1.1) is
A+pcosO@SN e —psinf YN e

D(\) =
psin@ Sy e 2 A+ pcosfSa_ e Nk

N 2 N 2
— (/\ +pcosf D e"’\T") + (p sing ) e_)"’“)
k=1

k=1
N N N N
= +pcosfd e +ipsing ) e M)A+ pcosfD e —igpsind ) e7N)
k=1 k=1 k=1 k=1
N N
= (A +p(cos@+isind) Y e ™) (A + p(cosf —isinf) Y _ e ™)
k=1 k=1

N N
— ()\+peiﬂze—ATk)()\_l_pe—i()ze—}\'rk)

k=1 k=1
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When ) is a complex root and ) is a complex conjugate of A, the relation

pe() = -V (2.5)
stands. Also, to satisfy (2.2), p+(A) =0 or p_(\) = 0, that is,

N N
P (/\ =\ +pei0 e—/\'rk — 0, or p_()\) =\ +pe—w e—/\’Tk =0.
+
k=1 k=1

On above equations, when 73 + 75 + -+ + 7y = 0, that is, 7, =0 for £k =1,2,---, N,

A\ + Npe*? = 0. Then, by (1.6) and |0] < g—, we have
Re A = Re {—Np(cosf £ isinf)} = —Npcosf < 0.

Thus, when 71 + 72 + - -+ + 7w = 0, the characteristic root of (2.2) lies in the left half of
the complex plane. Also, when A = 0 Npe*®? = 0, but Npe*® +# 0 since (1.6). Thus,
A = 0 is not a characteristic root of (2.2).

If the increasing of 74 + 7 + - - - + 7 leads the zero solution of (1.1) to instability, the
characteristic root of (2.2) must cross the imaginary axis and lie in the right half of the

complex plane, that is, there is an w # 0 such that
p+(iw) =0 for some 11,7, ,7v, or p_(w)=0 for some 7,72, -+, TN.

From (2.5), p-(iw) = 0 implies py (iw) = 0. Also when —g < 0 < 0, substituting § = —0
in py(iw) = 0 and p_(iw) = 0 implies 0 < § < g— Thus, we consider only the case
p+(iw) =0 when 0 < 0 < g
Substituting A = iw in (2.3), we have
. N .
pi(iw) = iw + pe? Y e7™
k=1

N
=iw+py, e/ 0-wk)
k=1
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= jw + pbi (cos(f — w) +isin(f — wm))

k=1 : :
N N
=pY_ cos(d —wr) +1 (w +p) sin(f— WTk)) :
k=1 k=1
Note that
R(w) = Re p,(iw)
N
=p>_cos(f — wmk)
k=1
1 N
=3p > (cos(0 — wmi) + cos(f — wTn_k11))
k=1
N 1 N (0 - WTk) + (9 - (,L)TN_k_H) (9 - (.di) - (9 —WTN_k+1)
= 5/))22005 ( 5 cos 5
N 20 ——'w(rk + TN;k+i) —W(Tk —_ TN—k-H)
—pkglcos( 5 )cos( — )
_ 20 — w(n +7v) | & w(m — TN-k+1)
= pcos ( 5 ) ’gcos 5 ,

and
I(w) =Im p_(iw)

N
—w +szin(9—wTk)
k=1
1 N
=w+3p D (sin(f — wrk) + sin(0 — wrN—_k+1))
k=1

N ((9 —wTk) + (0 — wTN_kH)) cos <(0 —wr) — (0 — WTN-k+1))

1
= - 2/2
w+2p sin

k=1 2 2
N - — —
—w+p Z sin (20 w(Tk + TN—-k+l)) cos ( w(’rk TN_k+1))
k=1 . 2 2
20 — N — T
=w + psin ( w(;l + TN)) kz::lcos (w(rk ;N kﬂ)) )

To satisfy p, (iw) =0, R(w) = 0 and I(w) = 0. First, observe that R(w) = 0 if and only
if

cos (20 W(;'l + TN)) —0 or Zcos (w(Tk ;’N—k—}—l)) —0
k=1
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If the latter is true, then /(w) = 0 would imply w = 0 which contradicts the assumption.

Hence, we must have, forn =0,1,2,---,

20 —w(n+v) 7w 20 —w(m+7mv) 0w
(a) > =3 +n7w or (b) 5 == —nm
In case (a),
" —(2n+1)7r+20, (2.6)
1+ TN

and when 0 <0< 7, w<0forn=0,1,2,---.

In case (b),

Y (2n+1)7r+20, 2.7)

1+ 7N

and when 0 <0 < 5,w >0forn=0,1,2,---. Also, R(w) =0 and I (w) :Obimply

pcos (29 — W(;'l + TN)) icos (W(Tk '_;N—k—i-l)) ~0
k=1

and

psin (20 - w(;'l + TN)) iv: cos (w(Tk ‘";'N—k+1)) -
k=1

By squaring both sides of equations above and adding them together, we have

2
5 (i (“’(Tk - TN-k+l>)) —
k=1 2

which implies

i\’: cos (w(Tk —;—N_kﬂ))‘ = |w]. (2.8)

k=1

p

In case (a), (2.6) and (2.8) imply

—2n + 1)m +20
1+ TN

7'1+TN 2

iCOS (—(2n+ 1)7T+29Tk —'TN..k+1) .

k=1

Hence,

p T+ TN 2 T+ TN

icos (Tk — TN—k+1 (2n + )7 — 20)’ _(2n+1)7m—20
k=1
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or, equivalently,

p(m1+7n)

N cos Tk — TN—k+1 (2n+ 1)7(—20
— T+ TN 2

)I:(2n+1)7r—20.

k

When the equation above holds, p,(A\) = 0 has a root A = iw. Hence, if, for n =

091’27"',

p(m1 + 7n)

N cos (Tk — Tv-ks1 (2n + 1)7 — 20
1

2 1)ym — .
P 3 >l<(n+ ym — 20, (2.9)

k=

then p,(X) = 0 does not have a root A = iw. However, Lemma 3.1, which will be given
in section 3, shows that if (2.1) is true, then (2.9) is also true. This indicates (2.2) does
not have a characteristic root A = iw and the characteristicroots of (2.2) remain in the
left half of the complex plane although increasing of ;/'1 +7 4+ TN

In case (b), (2.7) and (2.8) imply | |

(2n + )7 +20
T+ TN

=p
k=1

iCOS ((271, + 1)7T‘+ 207’);, —_ TN—k+1)

7'1+7'N 2.

Hence,

p

Te — TN-k41 20+ 1)7 + ZH)I _(@n+1)m+20

T+ TN 2 1+ TN ’
or, equivalently,
N o
e — TN—k+1 (2n+ 1) + 20
T+ T cos = (2n + 1)7 + 26.
ol + 1) |3 oo (2P B0 L) @n+1)

When the equation above holds, pi(\) = 0 has a root A = w. Hence, if, for n =

0,1,2,"',

N R N H - . .
— TN— 1 2
> cos T = TN—ki1 @t D + 6 ’ <(@n+1)m+20, = (2.10)
k=1 Tty 2 '

p(m +7n)

then p4(A) = 0 does not have a root A = iw. However, Lemma 3.2, which will be given
in section 3, shows that if (2.1) is true, then (2.10) is also true. This indicates (2.2) does

not have a characteristic root A = 4w and the characteristic roots of (2.2) remain in the

left half of the complex plane although ihcréasing of m+m+---+1N.
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Therefore, if (1.6) and (2.1) are true, then the zero solution of (1.1) is uniformly asymp-

totically stable.

(necessity) Suppose the zero solution of (1.1) is uniformly asymptotically stable and

consider the following two cases:
(A) p>0 and (B) p<0.

For the case (A), assume, for the sake of contradiction, the zero solution of (1.1) is

uniformly asymptotically stable, p > 0, and

p(m +7n) N (Tk — TN—k+41 (TF )) T
§ : oS AL N I, > - — . .
2 k=1C 1+ TN 2 01)) = 2 101 (2.11)

By Lemma 3.1, (2.11) and there exists an integer m > 0 such that

N
> cos

k=1

T, — TN — 2m + 1)m — 260
p(m1+ 7n) ( k Tk )

1+ TN 2

)'2(2m+1)7r-—20

are equivalent. Hence, there exists an pm\where 0 < pm < p such that

N
— TN- 2 -2
Y " cos (Tk TN k4l (2m + L) o)l =(2m+ 1)w — 20.

pm(T1+ TN)

When the equation above holds,

N
A+ pme? Y e =0
k=1

has a root

(2m+ 1)77'—29
n+7TN '

A=—1
from first part of the proof.

Here, consider the movement of the zero of

N
pr(\) = A+ pe? > e = ()
k=1

with p as a parameter. Namely, let A be a function of 7(0 < r < p) which satisfy

N
pr(r) =A+re? > e =0 (2.12)
k=1



and investigate its movement. Note that A is continuous of r.
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From the argument above, the zero of pi(\;r) = 0 is on the imaginary axis when

r = pm. Also, since the zero solution of (1.1) is uniformly asymptotically stable, there

exists p'(pm < p’ < p) and real number w' # 0 such that A = i’ is a zero of p, (A;r) =0

on the imaginary axis when r = p’ and its crossing of imaginary axis is not from left to
y p ry

right, that is,

oA
e <0
Re aT r=iw’ -

By the same argument of first part of the proof,

,  —(@n+1)m+26

W= # 0, forn=0,+1,£2,--

T3+ TN
Taking the partial derivative of A with r on (2.12),
. N 8 )\ . N
1—re¥ Z e 2 | =2 4 ¥ Z e =,
k=1 or k=1 )

or

O0A Alr

or  1—re? YN  me

Let d(\;7) =1 —re? N | 7. Since A = i’ when r = p/,
N
d(w';p') =1- pleiﬁ ZTke—iw’Tk
k=1
N
=1— p/ Z Tkez‘(G—w’Tk)

k=1

N
=1—p"Y 7 (cos(f — w'n) +isin(f — w'n))
k=1

N N
= (1 —p' Y mecos(d — w’Tk)) —ip' Y ksin(f — w'n)

k=1 k=1
N
= (1 —p' D mcos(d — w’Tk)>
k=1
N

— zp’ Z (T sin(0 — W'Tk) + Tv—k+18i0(0 — W' TN_k41)) -

k=1

(2.13)

(2.14)

(2.15)
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From (2.14), for k=1,2,--- ,N and n =0, £1,42,---,
00— =—(0—wrnops1) + 2n+ )7
which implies that
sin(f — w'n;) = sin(@ —w'ry—k41) fork=1,2,---,N. (2.16)

Also, from Im p,(iw'; p’) =0,

N
w' +p' ) sin(0 —w'ne) =0,
k=1
or
N 54
> sin(f0 —w'n) = —= #0. (2.17)
k=1 p

Thus,

N . N
d\r) = (1 —p' D mecos(d — w'Tk)> - %p’ > (T + TN-k41) sin(f — w'n)

k=1 k=1

k=1

N ~ N
= (1 —p' ) mcos(d — w’rk)) - %p'(n +7n) ) sin(f — w'n)
k=1

N .

= (1 - Z 7 cos(0 — w'Tk)) — %(7’1 + v )’
k=1

which implies that the denominator of (2.15) is nonzero and there exists a value of 3

at A = iw'.

Observing the crossing of the imaginary axis by the characteristic root when r = p’ and

A =1,
A A7
sign Re %77 T sign Re ((—37) oy
. 1 —re® YN | Te™
= sign Re { M oy
= sign Re P e Sy ™)
w'
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p((1=p N 7 cos(0 —w'n)) — %(Tl + 75)w')

'

= sign Re

/
= sign {—p (ﬁ;TN)} >0

which contradicts (2.13). Therefore, if p > 0 and (2.11) holds, then the zero solution of
(1.1) is uniformly asymptotically stable.

In case (B), when p = 0 the zero solution of (1.1) is not uniformly asymptotically stable
which contradicts the assumption. Hence, consider the case when p < 0.

We consider the following two cases when p < 0:

() lpl (11 + Tn) g:cos (Tk: - TN—Ic+1(_7_r_ _ |9|)> < g — 10|

2 =1 7'1+TN 2

and
ol 4 ) & (Tk — TN—kt1, T ) m
LSS SLAELEA ko NoRHL > _19].
) LT 5% o (Tt T o) 2 5~ 1o
In case (i), assume, for the sake of contradiction, the zero solution of (1.1) is uniformly

asymptotically stable, p < 0, and

(1 +7n) & (Tk — TN—k+1 (W )) T
e — =0 ——16]. 2.18
7 2T 2 1)<z~ (2.18)
Repeat the same argument in the proof of sufficiency using p = —|p|. When 7 + 7 +

---+47; = 0, one can show that the characteristic root lies in the right half of the complex
plane and remains in that plane as long as (2.18) ‘holds. This shows the zero solution of
(1.1) is not uniformly asymptotically stable which contradicts the assumption.

In case (ii), assume, for the sake of contradiction, the zero solution of | (1.1) is uniformly

- asymptotically stable, p < 0, and

M f:cos (Z—E—_—M (W W)) 2 ZT2_ —101.

2 k=1 1 + TN 5 B
Also, in this case by repeating the same argument in the proof of neccesity of case (A),

one can show the contradiction. : ' O
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3. Lemmas. In this section we give the proofs of lemmas which are used to prove the

theorem.

Lemma 3.1.

N — Tn_ka1 (20 + D)7 — 20
p(r1+ 7v) g;:lcos (Tkﬁ _:NT;H( nt Q)W ) <@n+1)m—20 for n=0,1,2,---
(3.1)
and
plr+ 1) & (Tk"‘TN—k+1 (w )) m
AL S = (=9 —— |0 3.2
7 2\ T 2 )<z~ (3.2)

are equivalent where 7, =7+ (k— 1)l (1 > 0,1 >0) and 0< 8 < g

Proof. For ¢ € |0, %] andn =0,1,2,-- -, we always have that | sinng| < nsin ¢. Denote
™ Te — TN-k41 T

T o= | TNk T p kb —1,2,..., N.

2 ¢ I 1+ TN I2 o

When¢€[0,g],0$9<—g,and0< Th — TNkt

1+ 7N

<lfork=1,2,---,N,

(Tk —TN-k+1 (2n+ 1) — 20)'
cos
1+ TN 2

cos (Tk — TN—k+1 (2n -+ 1)7?') cos (Tk —~ TN—k+1 0)

1+ TN 2 1+ 7N
+sin Tk — TN—k+1 (2n + 1)’/1' sin <Tk — TN—k+1 9) ‘
1+ 7N 2 1+ TN
< cos Te — TN-k+1] (2n + D)7 cos ( Tk — TN—k+1 9)
1+ TN 2 1+ TN
+sin e — TN—k+1| 2+ )7 sin ( Tk — TN—k+1 0) |
T1 + TN 2 T + ™
o (om0 5 )om (2522
. T . Tk — TN—k+1
o s1) (2 6)) o (|22 01 )
-I—sm<(n+ )(2 ¢>>>s1n( p——— )
. Tk — TN-k+1
< 2 1 - 0)
< |lsin((2n + )¢)|cos( g

Tk — TN—k+1
+ —

sin ((2n +1) (g - (b))

sin (

T+ TN
< |(2n +1)sin g cos ( e 0) 4 (2n + 1)sin (% - ¢> sin ( Btk 9) |
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Tk — TN—k+1 Tk — TN—k+1

k=1

T T
=(2n+1 cos(—-— )COS( 0>_|_- (____ ) ( 0)|
( ) 5 ¢ m——— sin ( 7 ¢ ) sin —
< (2n+1) (cos Tk = TN-k+ E)Cos(ﬂc:_M 9)
T1+TN 2 T]+TN
+oin (| ke 2 g (|22 Mok )|
n+Ty 12 4+ TN
Te —TN—k41{ (T
=(2n+1 = T =—9
(2n + )Cos( . (2 )))I
= (2n + 1) cos (Mﬂ"ﬂ (_7[ _ |9|>)
1+ TN 2
Since
icos Te = TNk (20 + )7 — 20 <icos Tk — TN—k41 (20 + 1)m — 20
k=1 T+ 2 = ™+ TN 2 ’
we have
N
Te — TN—k+1 (20 + 1) — 20
+ cos
plr-+m0)[3 ( e )
N
Tk — TN—k+1 (20 + 1) — 20
<p(n+T cos
< el N)Ig ( T+ TN 2
N
Te — TN—k+1 (T
< (2n+1)p(my + 7v) ) cos (_W (§ _ |9|)) .

Thus, to satisfy (3.1),

Y Tk “TN=k+1 (T
(2n + 1)p(ry + 7)) cos (——~—— <§ - ]0|)) < (2n+1)r — 26,

k=1 T1+‘TN

or

(7'1 + ™) ( — TN-k+1 (7r )) T 0
Z s 10)) <5 eyt

T1+TN

Since % — 0] < 72r forn =0,1,2,--- and 0 < 0 < g, (3.2) impies (3.1). And

2n+1
Clearly, (3.1) implies (3.2) when n = 0. O

Lemma 3.2. If

N ~ .
p(Tl + TN) ZCOS (Tk TN—k+1 (g _ |9|)> < g _ l0|’ (3.3)
k=1

2 T+ TN
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then

p(m1+7n) <(2n+1)w+20, for n=0,1,2,

1+ TN 2

i cos (Tk —TN_kt1 Cn+ D) + 20)

k=1
(3.4)

Proof. From the same argument in the proof of Lemma 3.1, we get

ZCOS < ® — TN—k+1 (2n+ 1)7‘(’+29>‘

= 1+ TN 2

p(m +7n)

< @n+Dp(n + 1) icos (77“_—77""_?_‘51 (g— - |0])> :

=1 1 +7Tn

To satisfy (3.4),

N —
(2n + Dp(my + 7v) kz::lcos (%A% (g— — |0|)) < (2n+1)mw + 20,

or

T+ T T] T 0
AP 5 con (Bpiok (3 ) <T g

1 +7'N

Sinceg—|0|_2+ 1forn:0,1,2,---.emd0<09<— (3.3) implies (3.4). O

2n
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