OOoo0O00oOooon
940 0 1996 0 1-6 : 1

A note on Sturm-type comparison theorems on a half-open interval

EEX-® WE #E  (Yak Naito)

1. Introduction and statement of the results

In this note, we investigate comparison theorems of Sturm-type on a half-open interval
[a,w), w < co. We consider two differential equations '

(1.1) (p(t)z') + gq(t)z = 0, a<t<uw,

(1.2) (P)y) +Q)y=0, a<t<u,
where p(t), q(t), P(t), and Q(t) are continuous functions on [a,w), and
p(t)> P()>0 and Q1) > g(t) on[a,w)

In this case, (1.2) is called a Sturm majorant for (1.1) on [a,w) and (1.1) is called a Sturm
minorant for (1.2). |

Sturm’s comparison theorem can be stated as folows: (See, e.g., [2, Chap.11, Theo-
rem 3.1].)

Theorem A. Let z(t) # 0 be a solution of (1.1) and let z(t) has ezactly n (> 1) zeros
t=1t <ty <-- <ty in(ab],b<w. Lety(t) be asolution of (1.2). If either z(a) =0 or

z(a) # 0, y(a) # 0, and
p(a)z'(a)
z(a)

then y(t) has one of the following properties:

P(a)y'(a)
y(a) '

2

(i) y(t) has at least n zeros in (a,t,);
(ii) y(2) 1s a constant multiple of z(t) on [a,t,] and p(t) = P(t), q(t) = Q(2) on [a,1,].



Let z(t) > 0in (¢,,w) in Theorem A. In this case, it seems interesting to ask the question
whether a solution y(t) of (1.2) has at least one zero in (¢,,w) or not?
Assume that (1.1) is nonoscillatory at ¢ = w. It is well known [2, Chap.11, Theorem 6.4]

that (1.1) has a principal solution z(t) which is essentially unique (up to a constant factor)
such that

w ds
/ p(S)z&P

and for any solution z,(t) linearly independent of z4(¢),

lim Zo(t)

=0.
t—w ml(t

~—

The solution z;(¢) is called a nonprincipal solution.
Our main results are the following.

Theorem 1. Assume that (1.1) is nonoscillatory at t = w. Let zo(t) be a principal
solution of (1.1) satisfying zo(t) > 0 in (a,w). Let y(t) be a solution of (1.2). If either
zo(a) =0 or zo(a) # 0, y(a) # 0, and

! !
(13) p(a)x()(a’) Z P(a')y (a’))
zo(a) y(a)

then y(t) has one of the following properties:

(i) y(t) has at least one zero in (a,w);
(ii) y(t) 1s a constant multiple of zo(t) on [a,w) and p(t) = P(t), q¢(t) = Q(¢) on [a,w).

Theorem 2. Assume that (1.1) is nonoscillatory at t = w. Let zo(t) be a principal
solution of (1.1) and let z(t) has exactly n (> 1) zeros in (a,w). Let y(t) be a solution of

(1.2). If either zo(a) =0 or z¢(a) # 0, y(a) # 0, and (1.3) holds, then y(t) has one of the
- following properties:

(i) y(t) has at least n + 1 zeros in (a,w);
(ii) y(t) s a constant multiple of zo(t) on [a,w) and p(t) = P(t), ¢(t) = Q(¢) on [a,w).

Remark. For other results concerning comparison theorems of Sturm-type on a half-open
interval, we refer to [4] and [5].

When p(t) = P(¢) and ¢(t) = Q(t) on [a,w), as a consequence of Theorems 1 and A we
have the following.

Corollary 1. Assume that (1.1) is nonoscillatory at t = w. Let z4(t) be a principal
solution of (1.1) and let to (> a) be the largest zero, i.e., zo(to) = 0 and zo(t) > 0 in
(to,w). Then we have the following properties:



(1) every nonprincipal solution has exactly one zero in (to,w);

(i) every solution of (1.1) has ezactly one zero on [to,w).

Equation (1.1) is said to be disconjugate on an interval J if every solution of (1.1) has
at most one zero on J. (See [1] and [2].) By Corollary 1, we obtain a criterion for (1.1) to
be disconjugate. '

. Corollary 2. Assume that (1.1) is nonoscilldtory at t = w. Let zo(t) be a principal
solution of (1.1) and let to (> a) be the largest zero. Then (1.1) is disconjugate on [t1, w)
if and only if to < t1.

Finally, we give a comparison theorem for disconjugacy:

Corollary 3. Assume that (1.2) is nonoscillatory att = w. (Then (1.1) is nonoscillatory
at t = w.) Let zo(t) and yo(t) be principal solutions of (1.1) and (1.2), respectively. Let
to and t1 (to, t1 > a) be the largest zeros of zo(t) and yo(t), respectively. Then, we have
either (i) to < t1 or (ii) to = t1 and p(t) = P(t), q(t) = Q(t) on [to,w). In particular, if
(1.2) is disconjugate on an interval J, then (1.1) is disconjugate on J.

Remark. The comparison theorems for discoﬁjugacy have been shown in [1] by different
methods.

2. Proofs of Theorems
We prepare the following lemmas.

Lemma 1. Assume that q(t) < 0 on [a,w) in (1.1). Then (1.1) 1s nonoscillatory at
t = w and a principal solution zo(t) of (1.1) satisfies zo(t) > 0 and z4(t) < 0 on [a,w).

Lemma 2. Assume that (1.1) is nonoscillatory at t = w. Let zo(t) be a principal
solution of (1.1) and let y(t) be a solution of (1.2) satisfying y(¢t) > 0 on [T,w), T > a.
Then zo(t) > 0 on [T,w) and

p(t)zo(t)
ZCg(t)

P(t)y'(t)
y(t)

< on [T,w).

Lemmas 1 and 2 are shown in [2, Chap.11, Corollary 6.4] and [2, Chap.11, Corollary 6.5),
respectively. However, for the sake of the completeness, we give (slight simple) proofs of
them.



Proof of Lemma 1. Let z;(t), 1 = 1,2, be solutions of (1.1) determined by z;(a) = 1 and
z;(a) = 4. It is easy to see that (p(t)z}(¢))’ > 0 and z;(¢) > 0 on [a,w), i = 1,2. Since z(%)
and z,(t) are linearly independent, either z;(¢) or z,(¢) is a nonprincipal solution. Without
loss of generality, we may assume that z;(¢) is a nonprincipal solution. By [2, Chap.11,

Corollary 6.3],
ds

zo(t) = z1(t) /tw m, a<t<uw,

is well defined and a principal solution of (1.1). We see that z(¢) > 0 on [a,w). We obtain

o4(t) = 40 [ ==

1
Nea(&P  p(t)ea(t)’

Since p(t)z(t) is nondecreasing and z:(t) is positive,
1 g

a<t<w.

w  z(s) 1 ) 1
t)zo(t) < D ds — =—1 <0, a<t<uw.
PO < | G pt T g T i <0 o stey
Thus, we have z{(t) <0 on [a,w). m|

Proof of Lemma 2. Let
t !
u(t):exp(/ Mds), T<t<w.
T p

Then u(t) > 0 on [T, w) and satisfies

Pt _ POV o0 Tt e
where Wy )
1 1 P)y'(¢
%0 =00+ (57~ 545) (B4 2) + Tt
Let z(t) = zo(t)/u(t) on [T, w). Then z(t) is a solution of
(2.2) (P2 + @] (4(t) — Qo) 2 =0, T<t<w.

Since z(t) is a principal solution, we have

/“’ ds _ /“’ ds
p(s)[zo(s)]? p(s)[u(s)][=(s)]?

Thus z(t) is a principal solution of (2.2). We note that Qo(t) > Q(t) > q(t) on [T,w).
Then, by Lemma 1, we have z(t) > 0 and 2'(t) < 0 on [T, w), which implies z,(¢) > 0 on
[T,w). From the left side of (2.1) and

= Q.




we conclude that

p(t)z'(t)
z(t)

p()w'(t) _ P(t)y'(?)
ut) ()

< I'<i<w.

O

Proof of Theorem 1. Assume that y(t) > 0 in (a,w). By Picone’s identity [3], we have

d [z P(zly — zoy')?
(2.3) - ?"(pxgy—ony') =(Q — g)zg + (p— P)zg + (b > )

We observe that if zo(a) = 0 then

xo(t) ' ! _ / : zO(t) .
fim ~75 (P6(u(6) = PO(0) (1)) = ~P(@)ao(a)y/ (@) im T = 0,
and that if zo(a) # 0, y(a) # 0, and (1.3) holds, then
o0 e o (Pa)sh(a) _ P(a)y'(a)
im 205 20)a3(00(0) = PE)aa(19(0) = [ (L2200 KOWLED)

Therefore, integrating (2.3) over [7,] and letting 7 — a, it follows that

[20(t)]? (P(t)$6(t) _ P(t)y'(t)) > /at [(Q et (p PR+ P(zhy — a:oy’)z} i

zo(t) y(t) Y

for a < t < w. From Lemma 2, we have

P(zpy — zoy')?
yZ

t
/ [(Q—q)w%+(p—P)wé?+ stso, a<t<w,
which implies that ¢(t) = Q(t), p(t) = P(t), and zo(t)y'(t) = z(t)y(¢) on [a,w). Hence,
y(t) is a constant multiple of z¢(¢) on [a,w). This completes the proof of Theorem 1.
|

Proof of Theorem 2. Let t =t; <1, < --- < t, be zeros of z¢(¢) in (a,w). We note that
y(t) satisfies either (i) or (ii) in Theorem A on [a,1,].

By applying Theorem 1 on [t,,w), we have either y(t) has at least one zero in (¢,,w) or
y(t) is a multiple constant of zo(t) on [t,,w) and p(t) = P(t) and ¢(t) = Q(¢) on [t,,w). In
the former case, y(t) has at least n+ 1 zeros in (a,w). In the latter case, since y(t,) = 0, we
have either y(?) has at least n + 1 zeros in (a,w) or y(t) is a multiple constant of z4(t) on
[2,w) and p(t) = P(t) and ¢(¢t) = Q(¢) on [a,w). This completes the proof of Theorem 2.
O
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