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8.

An algorithm of computing b-functions
RETA BRI (iR - 2)

8.1 Introduction

Let f(z) € K[z] = K[=1,...,2a] be a polynomial with coefficients in a field K of characteristic

zero. Let us denote by
D, = K[[z1,...,2a)](01,...,0a)

the ring of differential operators with formal power series coefficients with 9; = 0/0z; and 0 =
(B1,...,0n). (If K is a subfield of the field C of complex numbers, then we can use the ring
D, of differential operators with convergent power series coefficiets instead of D,. This makes
no difference in the definition below.) Let s be a parameter. Then the (local) b-function (or the -
Bernstein-Sato polynomial) b (s) associated with f(z) is the monic polynomial of the least degree

b(s) € K[s] satisfying

P(s,2,0)f(2)""" = b(s)f(2)"

with some P(s,z,d) € Da|s].

We present an algorithm of computing the b-function bs(s) for an arbitrary f(z) € K[z]. A
system Kan of N. Takayama [T2] is available for actual execution of our algorithm.

An algorithm of computing bs(s) was first given by M. Sato et al. [SKKO] when f(z) € Clz]
is a relative invariant of a prehomogeneous vector space. J. Briancon et al. [BGMM], [M] have
given an algorithm of computing bs(s) for f(z) € C{z} with isolated singularity. Also note that

T. Yano [Y] worked out many interesting examples of b-functions systematically.



8.2 Algorithm

Notation
oK : a field of characteristic 0;
oAt := K[t,z1,...,za]{O, 01, .., 0n) (8¢ :=9/dt, O; = 0/0x;)
e<r: a(total) order on N?"*2 with N := {0, 1,2,...} that satisfies the following conditions:
(A-1) a>rB=>a+7>rB+7 (Ya,B8,7 € N*"*?);
(A-3) v=—p>v' =y = (mv,e,f)>r (W,v,o",f") (Vp,v,u',v" €N, Vo, 8,0, 8 €
N"™);
(A-) (wp,8) zr (0,0,0,0) (Vu€N, Ya,8 €N"), |
where (i, v, a, B) corresponds to the ‘monomial’ t*297 8°. Note that > does not satisfy
(A-2) a>p0 (Vo€ N2
For each integer m, define a K-subspace of A, 41 by
F(Ans1) = (P = ) uueptz°0/0° € Antr | Gupap = 0if v—p>m).

w,v,a,f8

P >96‘O, its F-order ordp(P) is defined as the minimum integer m such that P € Fp(An41).
Then

6(P) = 6m(P) := Z Qv o0, pt" T 0L OF

v—p=m

is called the‘ fo'r\maylysy'r‘nbol of P. We define ¢(P)(s) € An[s] By
5o(t™ P) = p(P)(td) if m >0,
50(87™P) = Y(P)(t0,) if m<0.
Definition 1For z',j,p‘,‘u, wv' e N, o, B,a,8 € N’;, an ordég <u on N2"+3 is defined by
(i,p,v,0,8) =n (4,1, v, B) = (i>))
or (i=jand (u+&v,0,8)>r (W +0,V,¢,3))
or (i=j, (e p) =/, ,f), p>u)

with £,/ € N st.v —pu—£€ =1 —py — ¥, where (i, u,v, @, B) corresponds to t*ziz*0®. This
definition is independent of the choice of £,, and >y satisfies (A-1) and (A-2).
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In the following algorithm, we also use an order < on N?"*! satisfying (A-1), (A-2) (with 2n+2 .

replaced by 2n + 1) and
(A-5) if |B] > |B|, then (4, e, B) > (¢', o/, B') for any p,p’ € N and o, B,¢/, 8" € N™,



where (u, @, B) corresponds to s*z*9”.
Algorithm 2
Input: f(z) € K|z];
1. Let G be a Grobner basis of the left ideal of Any1[zo] generated by t — 2o f(z) and
O + z0(0f /0x:)0, (1 =1,...,n) with respect to <p;
2. Compute a Grobner basis H of the left ideal of A, [s] generated by ¥(G) := {(P(1)) |
P(z0) € G} w.r.t. an order satisfying (A-1), (A-2), (A-5);
3. Let J be the ideal of K[z, s] generated by HN K|z, s] = {fi1(=,s),..., fe(z,s)};
4. Compute the monic generator fo(s) of the ideal of K|[s] generated by f1(0,s),. .., f+(0, s)
by Groébner basis or GCD computation; if fo(s) = 1, then put b(s) := 1 and quit;
5. Compute the factorization fo(s) = (s — s1)*!...(s — sm)*™ in K[s] (K: the algebraic
closure of K);
6. Put J:=K|z,s]J.
Fori:=1 to m do
By computing the ideal quotient J : (s — s;)¢ for £ = pi, i + 1,. .. repeatedly, determine
the least £ > p; such that J : (s — s;)¢ contains an element which does not vanish at
(z,s) = (0, si). Denote this £ by £;;
7. Put b(s) = (s —s1) ... (s — sm)'™;
Output: bs(s) := b(—s — 1) € K|s];
Remark 3 A theorem of Kashiwara [K] states that the roots of bs(s) are negative rational
numbers. Hence in steps 5 and 6, there is no need of field extension.
We have implemented the steps 1 and 2 of the above algorithm in Kan/sm1 [T2], and the steps
3-7 in Risa/Asir [NS]. In the following table, the timing data refer to the computation time of

steps 1 and 2, which are naturally the most expensive part of our algorithi.
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timing data by

fa) brle) Kan on $-4/20
=y (+DE+e+E) 025
@ =8| 41+ o+ ag)o+ 3N+ 7)o+ 12) 0.7s
o =’ (s 4+ 1)(s + 2=)(s + 7)o+ 15)(s  10) oz
A | 1o+ D)o D+ s+ D)o+ s+ p) 0.85
P ESY | (1t Dt Dt s §)<s +3) 180s

Syt g4 2 <s+1)(s+——)<+ ><+ ) | .

x(s+ 5 )(s+ )(+ )(+ )

59 53 49 47
(s + 1)(3 + -?-)-6)(3 + %)(s + %)(s + 55) :

z® +y3+z2 7s
x(s + )(s+ )(s+ )(s+ 30 ‘
A (s+1)(s+ %)2(3 + %)2(3 + %)(s-i— g) 0.5s -
x3+y3—3xyz (S+1)3(S+§)(S+g—) -~ 2.5s
23 + zyz . | (S+ 1)3(8 + %)(S+ g) | . 058
(s + 1)3(3 + g)2(3 + 2R+ 3)2(5 + §)2
Ayl ey x(s+ T3)s+ 1)+ s+ 1o+ 3) | 1800

><(8+—-)( + )( + )

In the above table, the last four examples have non-isolated singuléx‘ities. Hence, as far as the
author knows, no algorithm has been known for computing b-functions for these polynomials. See

[Y, pp. 198-200] for estimates of the b-functions of 22+ y22% a® 4+ - 3xyz, 2° + 2yz.

Acknowledgement: The author would like to express his gratitude to Professor N. Takayama of

Kobe University for kind assistance in using Kan, without which implementation of our algorithm
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would have been much more difficult.
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