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4.1 Introduction |

Przytycki studies a family of cubic rational maps:
PC(a,b,c) = {f(z) = 2>+ c+ ;—_bT; :a,b,c € C},

and defines the exotic map to be a map of PC(a,b, c) having two super-attracting fixed points
and a critical point of period 2. An example of exotic map is given in Przytycki [Prz94], obtained
by computer experiment.

Example: f(z) = z> 4+ c+b/(z —a) : c = —=3.121092,a = 1.719727, b = 0.3142117.

He considers 1-parameter families joining exotic examples with Newton maps for degree 3
polynomials. The subfamily with a super-attracting fixed point except of co can be parametrized
by two parameters (k,w) as follows:

let w be super-attracting fixed point, and a = kw. Then

a=kw, b=2w*(1—-k)?, c=w?(2k—3) +w,
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and

2w®(1 — k)?

PC(w, k)= f(z) =22 + v (2k - 3) + w+ gy

Four critical points are co, w and

_ w(=1+4 2k —/4k = 3) . w(—14 2k + 4k — 3)
- 2 »E T 2

Przytycki gives two questions in [PI‘Z94]:
Question 1 In the set of Newton maps for the polynomials Py = z* + (A — 1)z — )\, there exist
Mandelbrot-like sets where the free critical point converges to a periodic attrcting orbit. For a
critical point v = g(k,w), what happens to M(v)-sections of the set of exotic maps when we
change parameters from Newton maps to the exotic ones ? : namely, do these sets move to M(v)
(or M(u))-sections of the set of exotic maps when we change parameters from Newton maps to

the exotic ones ?
Question 2 Describe precisely how does the dynamics bifurcate for real parameters k, w.

Concerning about these questions, we obtain following results: to the first question, there is an
affine algebraic curve consisting of Newton maps for degree 3 polynomials, and to the second one,
we partly give an answer. Namely,for any fixed parameter k, we consider the bifurcation of this

family as the parameter w varies monotonely. We observe complex bifurcations for 3/4 < k < 1.

1 Bifurcations in real (k,w)-plane
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4.2 Cubic Newton Curve

We show that there is an affine algebraic curve consisted by all Newton maps in PC(a,b, c). We
call hereafter this curve cubic Newton curve, denoted by N (w, k).

Proposition 1 = The defining equation of the cubic Newton curve is the follwing:
N(w, k) : Ew’ — 6kw? + 9w? — 2w — 3w + 1 = 0.
The cubic Newton curve is irreducible of genus one with two singular points
(0,0,1), (0,1,0)

on Leo: Z =0 of P2C: (Z,k,w).

Outline of proof:

f(k,w,2) :zz+w2(2k—3)+w+M’
(z — kw)
/ 2 1—k2w3
f(k,w,z):Qx—_hlw_)T_

The critical points are oo , w, and

_ —wv4k =3 —(1-2k)w = w4k —3—-(1-2k)w

- 2 2

For f to be a Newton map, we claim f(k,w,u) = u, or f(k,w,v) = v.

Therefore the equation of the Newton curve is

(K*w® — 6kw® + 9w’ —2%kw —3w+1) =0.
Let
F(Z,k,w) = Z* — 3wZ® — 22%kw + 92%w® — 6Zkw® + k*w® = 0,

and Py : (0,0,1), P, :(0,1,0). The singular points are Py, P,. The principal part of F is
(3Z — k). Therefore by Pliicker’s formula, we can calculate the genus one.

We define dynamical curves in the parameter space:

Definition Let Per,(u) consist of all parameter pairs (k,w) for which the associated cubic

rational map f(k, w,z) has a periodic orbit of period p with multiplier (f7)" equal to .

In particular, Per;(0) consists of all parameter pairs with a super-attracting fixed point. The
real part of the curve Peri(1) consists of all parameter pairs for which the graph of f is tangent
to the diagonal. Such points of tangency are called saddle nodes of period 1. On Per (—1)

attracting period one orbits bifurcate into attracting period two orbits.
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It is clear that (k,w) of Per;(—1) belongs to Pery(1), but it is not known whether inverse
inclusion holds. In the quadratc rational maps, we have Pery(1) = Per;(—1).
Proposition 2 We obtain defining equations of two dynamical curves:
Per (1) : k*w? — 6kw?® 4+ 9w® — 2kw — 2w+ 1 =0,
Per;(—1): 3k*w? — 18kw® + 27w® — 6kw — 14w + 3 = 0.

See Figures for plots of these curves in the real case.
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2 Newton -
curve :(k? — 6k +9)w? — (2k+3)w+1=0. [E3 Dynamical curves :Per;(1), Per;(—1).

Outline of proof:
The fixed points of f(k,w,z) are oo, w and

_(1-kw-1-/(k® - 6k+ 9w + (—2k — Dw + 1

Z1

2 b
(1=K w41+ /(k* —6k+ 9w? + (-2k —2)w+ 1
o = B) .
From f'(k,w,z;) =1, (resp. = —1 ) for i = 1, or 2, we obtain the equation of Per;(1) ( resp.

Per;(-1) ).

4.3 bifurcations

Proposition 3  For the real parameter k, we can rougly divide (k,w)-plane into four distinct

classes as follows: (1) k < 3/4,(2)3/4<k<1,(3)1<k<3/2 (4)3/2<k.

Qutline of Proof:
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4 Bifurcation:k = 1.15, w : (—1.5,-2) — (2.5,2) 5 Bifurcation: £k =15, w : (-2,—4)—(6,4)

e For k: 3/4 < k < 1, the critical points u, v, w except oo are ordered as u < v < a < w.
efork: 1<k<3/2, u<w<a<w. '

eFork: 3/2<k,w<u<a<wv.in case (3) (resp.(4)), the dynamics of u ( resp. v )is analyzed
as the dynamics of a quadratic map by Douaddy-Hubbard-Sullivan’s theory( [D-H85]). In case
(2), the dynamical behavior is very complex. In case (1), two critical points u,v are compex
numbers, mutually complex conjugate. The dynamical behavior is very complex: namley we can

observe ”swallow” and ”tri-corn” configulations ([Mil90]).
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