goooboooobgon
9410 1996 O 1-6

1.

On SolVing the Initial Problem of LR
Arrays

Dongdai Lin( HK - #T)
MRIE (HK - 3T

Let Fq be a finite field with ¢ elements. By an array A of dimension 2, we mean an {nﬁnit.e

matrix A = (aij)i»o,j>0 over Fq. If there exist two positive integer r and s such that
Qitr,j = Gij = Gijys 120,720

bthen we say that A is a periodic array. Furthermore, if r, s are the smallest positive integex‘s for
which above condition is satisfied, we call A an array of period r X s. “
An m x n submatrix A(7,7) = (@iti'j+j')o<i’<mo0<j'<n Of A is called m X n window of A at
(i,7). A(3,7) is the row vector (@i )o<i<mn of dimension mn, where a; = a; i j4j, 1 =the integer
part [;tl—] of £, and ' =t—n [;’;] The entry a;; of A is called (¢, j)—component of A. :
’Deﬁnition 1: Let A = (aij)i»0,j>0, B = (bij)i>0,;>0 be two arrays. If there exist two non-

negative integers c, d such that
bij = Qige,j4d foralli >0, 320

then B is called (c,d)-translation of A, denoted by B = A. 4.

Definition 2: Let A = (aij)i>o0,j>0 be an array, m and n be two positive integers. If there exist



two mn by mn matrices over Fq of the following form
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then we call A a linear recurring (or LR in short) array of order m X n and write A € G(T},, T,).

;From the definition, we can see that any LR array A of order m X n is determined by the

window A(0,0), we call the window A(0,0)(or A(0,0)) the initial state of A.

Generally speaking, for two given matrices Ty, T, the initial state can not be any m x n

matrix over Fq. Sometimes, a non-zero initial state even does not exist. Please see the following

examples:



Example 3. Let m =n = 2,

01 00 00 0 1
110 0 | 0 0 0 1
Th= 7Tv=
0 0 0 1 1 010
0 01 1 01 0 0

Then there is no non-zero 2 X 2 matrix can be chosen to be an initial state.

Example 4. Let m =n = 2,

00 0 O 0 0.1 0
1 0 0 1 0 0 01
Ty = , Ty =

01 0O 1 0 10

0 0 1 0 01 0 0
1 1

Then we can get an array for A(0,0) = , but we can not for A(0,0) =

0 1 0

;From the above examples, we can see that for two given mn X mn matrices T, and T, some
m x n matrices can be chosen to be initial states of arrays, while the others can not. The obvious
problems are how to determin if a non-zero initial state exists, which m by n matrices can be
chosen to an initial state, and how many such legal initial states there are. Furthermore, if the
initial state has been given, how to determine the (7, j)—components of the array.

Proposition 5 Let T, T, be two given matrices as in Definition 2, G(T»,T%) is the set of all
arrays generated by Th,T,, A € G(T),T.), then »
(1) For any two non-negative integers ¢ and d, Ac,a € G(Th, T5).
(2) G(Tw,Ty) is a vector space over Fq under the usual addition and scalar multiplication,
and dim G(T,,T,) < mn.

Let Sa be the set of all arrays over Fq, t(z,y) = Z(i,j)ESupp(t) t;jz*y’ a polynomial over Fq,
where supp(t) is the support of ¢(z,y). Then we can treat t(z,y) as a linear operator from Sa to
itself as following

e A=( Y, H1a144,045)i20,720,

(1,J)ESupp(t)
where A = (aij)iz0,j>0 € Sa.

Obviously, t(z,y)A = Z(I,J)ESupp(i) t;7A;s, where Ay is the (I, J)-translation of A.
Proposition 6 Let ¢, (z,y) and t2(z,y) be two polynomials in Fq[x,y}, A € S4. Then
(ti(z,y) +t2(z,y))A  =t(z,y)A +t2(z,9)A
(ti(z,Yte(z,y))A = ti(z,y)(t2(z,9)A)
= tao(2,y)(t (2, 9)4)
Proof By check directly.



Proposition 7 For any polynomial f(z,y) € Fqlx,y], f(z, y) is a linear operator from G(T}, T,)
to itself.

Proof Seeing that for any A € G(Ti,T%), f(z,y)A = E(I’J‘)@uw(” fr1A;, the proposition is
clear by Proposition 5.

Let Ty, T, be two matrices over Fq as in (2), construct polynomials as follows:

m-— n~-1
fk(.'li,y)=.’lik'y" _( . c_-__.gl d=0 Tcn+d,k'xcyd) k:0717"'7m_1

m m—1 n-—1 c
gk(x,y)zw yk-(zczo d=0 lentd,k - T yd) k=0717""n'—1

b

and let PS = {fi(z,y), -, fm-1(2,¥); 01 (2,9), -+, gu—1(2,¥)}, < PS > be the ideal generated
by PS. Then we have

Proposition 8 An array A over Fq is contained in G(T%,T,) if and only if for any polynomials
t(z,y) in < PS >, we have t(z,y)A = O, the zero array.

Let GB be the Grébner basis of < PS >, A the Support of < PS > with respect to GB. Then
The;orem 9 Let A = (aij)i>0,520 € G(T»,T»), R = Z(k,l)eA rz’y' be the normal form of
polynomial x;yj modulo GB, then a;; = Z(k,l)eA TkiGki.

Proof Since 'y’ — R €< PS >, hence by Proposition 8, we have (z'y’ — R) - A = O, thus
ij = Y enen THOk =0, ie ay = E(k,l)eA TkiGkI.

Proposition 10 For any arbitrary set of values a;; in Fq for (i,7) € A, there is a unique array
A € G(T,T,) such that a;;((i,7) € A) are the (i, j)—components of A.

Proof Let R = Z(I,J)GA rrs2'y’ be the normal form of 2'y’ modulo GB. Take

aij = Z(!,J)GA rigary and A = (ai;)i>0,;50. Then A € S4 and for any polynomial ¢(z,y) € GB,
t(z,y)A = O. Since GB is a basis of the ideal < PS >, so by Proposition 8, A € G(Ti,T,).

The uniqueness is obvious.

Corollary 11 dim G(Th, T,) = |A}, the number of elements in A.

By the discussion above, we can see that any array is determined by the components located
in the support of < PS >. Generally speaking, for two given matrices as in (1.3), A = {(i,)|0 <
i < m,0 < j < n} is not necessarily the support of the ideal < PS >, i.e. there may be a
polynomial in < PS> supported by A and this polynomial gives a relation among these ai;’s,
(i,7) € A.

Suppose A and A have elements arranged in the following order:

A N T[)>T1> e >71|A|—17
A Te>Ty> - >Ton1,

Rest(leJ/GB) = Z REJ]-’J):L'"yj (I,J) € A.
: (i,7)€AN
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Construct a mn by |A| matrix M = (Mmi;)o<i<mn,0<j<la With mi; = R(I,J,), where T) =
(r',J),T; =(I,J). Then

Theorem 12 An mn-dimensional row vector u can be chosen to be an initial state of some array

of G(T,T,) if and only if there is a |A]-dimensional row vector v such that u = Mv, where an

mn-dimensional row vector u = (uj,ug,---,umn) is said to be initial state of array A if
Ul Um+1l " Um(a—-1)+1
U2 Um+l - Um(n-1)+2
A(0,0) =
Um U2m c Umn

Proof Use Theorem 9 and Proposition 10.

Proposition 13 Let #(z,y) € Fq[x,y]. Then t(z,y) €< PS > if and only if for all A € G(Tx, T»),
we have t(z,y)A = O.

Proof Sufficiency: Let GB be the Grobner basis of < PS >, A the support of < P§S > w.r.t.
GB, R(z,y) is the normal form of #(z,y) modulo GB. Then (z,y) — R(z,y) €< PS >, so for
all A € G(T},,T,) we have

O = (t(z,y) — R(z,y))A = t(z,y)A — R(z,y)A = R(z,y)A.
Suppose R(z,y) = Z(} Dea rrszy?, then by expanding the leftmost side of above equality we
can get

E rrgarg =0

(I,J)ea
for all A = (aij)i»0,j>0 € G(Tn,Ty). But by Proposition 1, ars,(I,J) € A, can be chosen to
be arbitrary set of values in Fq, so rry = 0 for all (I,J) € A, thus R(z,y) = 0. Therefore
t(z,y) EX PS >.
Necessity: It is consequence of Proposition 8.

Theorem 14 If all the arrays in G(T%,T,) are periodic, then the ideal < PS > is of dimension !
zero. Conversely, if the ideal < PS > is of dimension zero, then any array A € G(T,,T,) has a
periodic translation, i.e. there are two positive integers ¢ and d such that A. 4 is periodic.

mn

Proof By Proposition 5, there are at most ¢™" arrays in G(Ts,T,). Let r X s be the common
period of all the arrays in G(T,T,). Then (z"—1)A = O and (y°—1)A = O for all A € G(T, T»),
soz" —1 €< PS>, y* — 1 €< PS >, hence the dimension of < PS > is zero.

Let GB = {f1,---, fn} be Grobner basis of < PS >. If < PS > is of dimension zero, then

by the Theorem 6 of [7] and Theorem 4 of section 3.1.3 of [1], there is a univariate polynomial

1The dimension of an ideal is defined to be the smallest possible number of parameter which are needed

in the parametric representation of the totality of all zeros common to the polynomials of the ideal



f(z) of z in GB. Write f(z) = f1(z)- z!, where t > 0, f1(z) a polynomial with non-zero constant
term, then there is an integer r such that fi(z)|(z” — 1) and for any array A € G(Tx,T:),
0 = f(z)A = (fi(z)z')A = fi(z)Aro, hence (2" — 1)A10 = O. Similarly, if we choose a
appropriate order of indeterminates, we can find an integer J and s such that for any array
A € G(Tx,T), (y° —1)Ao,y = O. Therefore for any array A € G(Th,Tv), (2" — 1)Ar,y = O,
(v° — 1)Ar1,5 = 0O, i.e. Ar, is periodic.
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