<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>QM-curves and \mathbb{Q}-curves(Deformations of Group Schemes and Number Theory)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Hasegawa, Y.; Hashimoto, K.; Momose, F.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1996), 942: 164-167</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60147</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

出版社: 京都大学
QM-curves and \(\mathbb{Q} \)-curves

Y. Hasegawa & K. Hashimoto & F. Momose

The Shimura-Taniyama conjecture has been almost solved [W][W-T] [Di]. This is the first report of our work on modular conjecture. Its a special case of the modular conjecture for the abelian variety of \(GL(2) \)-type (due to Serre[Se]). We give a partial answer to its conjecture for abelian variety of \(GL(2) \)-type with extra twistings [Sh][Mo1][Ri1]. The abelian variety \(A \) over \(\mathbb{Q} \) is a \(\mathbb{Q} \)-simple abelian variety whose ring of endomorphisms over \(\mathbb{Q} \) is an order of an algebraic number field of degree equal to \(\dim A \). By the congruence relation [Sh][De], we know that any \(\mathbb{Q} \)-simple factor of the jacobian variety \(J_1(N) \) of modular curves \(X_1(N) \) is of \(GL(2) \)-type. The modular conjecture for abelian variety \(A \) over \(\mathbb{Q} \) of \(GL(2) \)-type states that \(A \) is isogenous over \(\mathbb{Q} \) to a \(\mathbb{Q} \)-simple factor of \(J_1(N) \) for the integer \(N \) with \(N^{\dim A} = \text{conductor of } A/\mathbb{Q} \). The \(\mathbb{Q} \)-curve \(E \) is an elliptic curves over \(\overline{\mathbb{Q}} \) which is isogenous to its conjugate \(E^\sigma \) for any \(\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) [Gr]. The \(\mathbb{Q} \)-HBV is an abelian variety \(A \) over \(\overline{\mathbb{Q}} \) whose ring of full endomorphism is an order of totally real algebraic number fields of degree \(= \dim A \) and its \(F \)-isogeny to its conjugate \(A^\sigma \) for any \(\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) [Ri2]. The \(\mathbb{Q} \)-curves are special cases of \(\mathbb{Q} \)-HBV, we know that any \(\mathbb{Q} \)-HBV is a simple factor of an abelian variety of \(GL(2) \)-type [Py]. Now, let \(A \) be an abelian variety over \(\mathbb{Q} \) of \(GL(2) \)-type and \(E \) the field of fractions of the ring of endomorphisms over \(\mathbb{Q} \). Then \(E \) is totally real or CM-field [Mu]. Let \(F \) be the center of the \(\mathbb{Q} \)-algebra of the ring \(M = (\text{End}_A A) \otimes \mathbb{Q} \) of full ring of endomorphisms of \(A \). Then \(F \) is totally real algebraic number field or an imaginary quadratic field. In the first case, \(M \) is isomorphic to a matrix algebra \(M_r(F) \) or \(M_r(D) \) for totally indefinite quaternion algebra over \(F \). In the latter case, \(M \) is isomorphic to \(M_r(F) \) and \(A \) is isogenous over \(\overline{\mathbb{Q}} \) to \(r \)-tuple of an elliptic curve with complex multiplication by \(F \). We call the latter case CM-type. If \(A \) is CM-type, then \(A \) is modular [Sh]. So, we discuss non CM case. We may assume that the maximal order \(O_E \) of \(E \) acts on \(A \) over \(\mathbb{Q} \) [Sh]. Let \(\rho \) be a prime of \(O_E \), lying over a rational prime \(p \), \(V_p(A) = V_p(A) \otimes E_p \), and \(\rho = \rho_p \) the Galois representation of \(G = G_\mathbb{Q} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) on \(V_p(A) \). Then \(\det \rho_p = \epsilon \cdot \theta_p \) for the cyclotomic character \(\theta_p \) and a character \(\epsilon \) of

\[GL(2)\]
finite order. By a famous result of Faltings(Tate-Shavarevich conjecture), A is modular if and only if ρ_\wp associates to a cusp form of $\Gamma_1(N)$ of weight 2. The field E is generated by $a_l = \text{Tr} \rho_\wp(a_l)$ for primes $l \nmid p$-conductor of A/Q and Frobenius element σ_l of l, and F is generated by $a_l^2 e^{-1}(l)$ for primes $l \nmid p$-cond.of A/Q [Mo1][Ri1]. For a Dirichlet character χ, let A_χ be an abelian variety over Q obtained by the χ-twisting [Sh]. Then A_χ is determined up to isogeny over Q. We note that A is modular if and only if A_χ is modular [Sh].

Now, let $\delta = \delta(E/F(\zeta_r^2))$ be the different of E over $F(\zeta_r)$ for $r = \text{order of } \epsilon$ and a primitive r-th character ζ_r. Our first result is as follows. We may assume that \mathfrak{O}_E of integers of E acts on A over Q. For a prime \wp of \mathfrak{O}_E, let $\rho = \rho_\wp$ be the \wp-adic representation on the \wp-divisible points on A, and $\overline{\rho}$ its reduction mod \wp.

Th 1 Assume that there exists a prime \wp of \mathfrak{O}_E which divides δ, $\wp|p \neq 2$, and A has semistable reduction at p. Then,

1. There exists a quadratic field k such that $\overline{\rho}$ is isomorphic to the induced representation $\text{Ind}_k^Q \chi$ for a character χ of $G_k = \text{Gal}(\overline{k}/k)$.
2. If $p \geq 5$ or $p = 3$ and k is imaginary or A has super singular reduction at p, then A is modular.

For its proof, see [Mo2]. It has many corollaries. Let E be a non-CM Q-curve defined over an extension L of Q of $(2, \ldots, 2)$-type, and $A = \text{Re}_{L/Q}(E/L)$ is Q-simple. Define the degree $N = N_E$ of E by the l.c.m of the square free degrees of isogenies $\varphi : E \to E^\sigma$ for $\sigma \in \text{Gal}(L/Q)$. The following is a partial result for the Ribet's conjecture for Q-curves [Ri3]. This can be extend to Q-HBV.

Th 2 If a prime $p \geq 5$ divides N and A has semistable reduction at p, then A is modular.

The Q-curves of degree N corresponds to Q-rational points of the modular curves $X_0^*(N) = X_0(N)/<\{W_i\}>_{1(N)}$ for Atkin involutions W_i [El]. We get many examples, if $X_0^*(N) = \mathbb{P}^1$. cf [Py].

For other examples, we explain the QM-curves. The QM-curve is a curve C over Q of genus 2 such that the ring of full endomorphisms of its jacobian variety $J(C)$ is an order of indefinite quaternion algebra D and $\text{End}_Q J(C) \neq \mathbb{Z}$. Hashimoto-Murabayashi calculated many examples [H-M].
Theorem 3 If a prime $p \neq 2$ ramifies in D, and C has good reduction at p, then $J(C)$ is modular.

The above results can be extend to more general cases. Using Pyle's results, we have many examples of modular QM-curves over number fields. Further, the condition on reduction at p can be improved in some cases. Especially, if the abelian variety A of $GL(2)$-type has potentially ordinary reduction at p, the we have a criterion for modular conjecture.

References

[Py] Pyle, E.E., Abelian varieties over \mathbb{Q} with large endomorphism algebras and their simple components over $\overline{\mathbb{Q}}$, Thesis, Univ. of California at Barkley.

