<table>
<thead>
<tr>
<th>Title</th>
<th>QM-curves and \mathbb{Q}-curves (Deformations of Group Schemes and Number Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hasegawa, Y.; Hashimoto, K.; Momose, F.</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1996), 942: 164-167</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60147</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
QM-curves and \mathbb{Q}-curves

Y. Hasegawa & K. Hashimoto & F. Momose

The Shimura-Taniyama conjecture has been almost solved [W][W-T][Di]. This is the first report of our work on modular conjecture. Its a special case of the modular conjecture for the abelian variety of $GL(2)$-type due to Serre[Se]). We give a partial answer to its conjecture for abelian variety of $GL(2)$-type with extra twistings [Sh][Mo1][Ri1]. The abelian variety A over \mathbb{Q} is a \mathbb{Q}-simple abelian variety whose ring of endomorphisms over \mathbb{Q} is an order of an algebraic number field of degree equal to $\dim A$. By the congruence relation [Sh][De], we know that any \mathbb{Q}-simple factor of the jacobian variety $J_1(N)$ of modular curves $X_1(N)$ is of $GL(2)$-type. The modular conjecture for abelian variety A over \mathbb{Q} of $GL(2)$-type states that A is isogenous over \mathbb{Q} to a \mathbb{Q}-simple factor of $J_1(N)$ for the integer N with $N^{\dim A} = \text{conductor of } A/\mathbb{Q}$. The \mathbb{Q}-curve E is an elliptic curves over $\bar{\mathbb{Q}}$ which is isogenous to its conjugate E^σ for any $\sigma \in \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ [Gr]. The \mathbb{Q}-HBV is an abelian variety A over \mathbb{Q} whose ring of full endomorphism is an order of totally real algebraic number fields of degree $= \dim A$ and its F-isogeny to its conjugate A^σ for any $\sigma \in \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ [Ri2]. The \mathbb{Q}-curves are special cases of \mathbb{Q}-HBV, we know that any \mathbb{Q}-HBV is a simple factor of an abelian variety of $GL(2)$-type [Py]. Now, let A be an abelian variety over \mathbb{Q} of $GL(2)$-type and E the field of fractions of the ring of endomorphisms over \mathbb{Q}. Then E is totally real or CM-field [Mu]. Let F be the center of the \mathbb{Q}-algebra of the ring $M = (\text{End}_{\mathbb{Q}} A) \otimes \mathbb{Q}$ of full ring of endomorphisms of A. Then F is totally real algebraic number field or an imaginary quadratic field. In the first case, M is isomorphic to a matrix algebra $M_r(F)$ or $M_r(D)$ for totally indefinite quaternion algebra over F. In the latter case, M is isomorphic to $M_r(F)$ and A is isogenous over \mathbb{Q} to r-tuple of an elliptic curve with complex multiplication by F. We call the latter case CM-type. If A is CM-type, then A is modular [Sh]. So, we discuss non CM case. We may assume that the maximal order \mathcal{O}_E of E acts on A over \mathbb{Q} [Sh]. Let p be a prime of \mathcal{O}_E, lying over a rational prime p, $V_p(A) = V_p(A) \otimes E_p$, and $p = p_p$ the Galois representation of $G = G_\mathbb{Q} = \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on $V_p(A)$. Then $\det \rho_p = \epsilon \cdot \theta_p$ for the cyclotomic character θ_p and a character ϵ of
finite order. By a famous result of Faltings (Tate-Shavarevich conjecture), A is modular if and only if ρ_p associates to a cusp form of $\Gamma_1(N)$ of weight 2. The field E is generated by $a_l = \text{Tr} \rho_p(a_l)$ for primes $l \nmid p$-conductor of A/\mathbb{Q} and Frobenius element σ_l of l, and F is generated by $a_l^2 \epsilon^{-1}(l)$ for primes $l \nmid p$-cond.of A/\mathbb{Q} [Mo1][Ri1]. For a Dirichlet character χ, let A_χ be an abelian variety over \mathbb{Q} obtained by the χ-twisting [Sh]. Then A_χ is determined up to isogeny over \mathbb{Q}. We note that A is modular if and only if A_χ is modular [Sh].

Now, let $\delta = \delta(E/F(\zeta_r))$ be the different of E over $F(\zeta_r)$ for $r = \text{order of } \epsilon$ and a primitive r-th character ζ_r. Our first result is as follows. We may assume that \mathcal{O}_E of integers of E acts on A over \mathbb{Q}. For a prime \wp of \mathcal{O}_E, let $\rho = \rho_\wp$ be the \wp-adic representation on the \wp-divisible points on A, and $\overline{\rho}$ its reduction mod \wp.

Th 1 Assume that there exists a prime \wp of \mathcal{O}_E which divides δ, $\wp|p \neq 2$, and A has semistable reduction at p. Then,

1. There exists a quadratic field k such that $\overline{\rho}$ is isomorphic to the induced representation $\text{Ind}_k^\mathbb{Q} \chi$ for a character χ of $G_k = \text{Gal}(\overline{k}/k)$.
2. If $p \geq 5$ or $p = 3$ and k is imaginary or A has super singular reduction at p, then A is modular.

For its proof, see [Mo2]. It has many corollaries. Let E be a non-CM \mathbb{Q}-curve defined over an extension L of \mathbb{Q} of $(2, \cdots, 2)$-type, and $A = \text{Re}_{E/L}(E/L)$ is \mathbb{Q}-simple. Define the degree $N = N_E$ of E by the l.c.m of the square free degrees of isogenies $\varphi : E \to E^\sigma$ for $\sigma \in \text{Gal}(L/\mathbb{Q})$. The following is a partial result for the Ribet’s conjecture for \mathbb{Q}-curves [Ri3]. This can be extend to \mathbb{Q}-HBV.

Th 2 If a prime $p \geq 5$ divides N and A has semistable reduction at p, then A is modular.

The \mathbb{Q}-curves of degree N corresponds to \mathbb{Q}-rational points of the modular curves $X_0^*(N) = X_0(N)/<\{W_i\}>_{\Gamma(N)}$ for Atkin involutions W_i [El]. We get many examples, if $X_0^*(N) = \mathbb{P}^1$. cf [Py].

For other examples, we explain the QM-curves. The QM-curve is a curve C over \mathbb{Q} of genus 2 such that the ring of full endomorphisms of its jacobian variety $J(C)$ is an order of indefinite quaternion algebra D and $\text{End}_\mathbb{Q} J(C) \neq \mathbb{Z}$. Hashimoto-Murabayashi calculated many examples [H-M].
Th 3 If a prime $p \neq 2$ ramifies in D, and C has good reduction at p, then $J(C)$ is modular.

The above results can be extend to more general cases. Using Pyle’s[Py] results, we have many examples of modular QM-curves over number fields [H-M]. Further, the condition on reduction at p can be improved in some cases. Especially, if the abelian variety A of $GL(2)$-type has potentially ordinary reduction at p, the we have a criterion for modular conjecture.

References

[Py] Pyle, E.E., Abelian varieties over \mathbb{Q} with large endomorphism algebras and their simple components over $\overline{\mathbb{Q}}$, Thesis, Univ. of California at Barkley.