QM-curves and \mathbb{Q}-curves

Y. Hasegawa & K. Hashimoto & F. Momose

The Shimura-Taniyama conjecture has been almost solved [W][W-T] [Di]. This is the first report of our work on modular conjecture. Its a special case of the modular conjecture for the abelian variety of $GL(2)$-type(due to Serre[Se]). We give a partial answer to its conjecture for abelian variety of $GL(2)$-type with extra twistings [Sh][Mo1][Ri1]. The abelian variety A over \mathbb{Q} is a \mathbb{Q}-simple abelian variety whose ring of endomorphisms over \mathbb{Q} is an order of an algebraic number field of degree equal to $\dim A$. By the congruence relation [Sh][De], we know that any \mathbb{Q}-simple factor of the jacobian variety $J_1(N)$ of modular curves $X_1(N)$ is of $GL(2)$-type. The modular conjecture for abelian variety A over \mathbb{Q} of $GL(2)$-type states that A is isogenous over \mathbb{Q} to a \mathbb{Q}-simple factor of $J_1(N)$ for the integer N with $N^{\dim A} = \text{conductor of } A/\mathbb{Q}$. The \mathbb{Q}-curve E is an elliptic curves over $\overline{\mathbb{Q}}$ which is isogenous to its conjugate E^σ for any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ [Gr]. The \mathbb{Q}-HBV is an abelian variety A over $\overline{\mathbb{Q}}$ whose ring of full endomorphism is an order of totally real algebraic number fields of degree $= \dim A$ and its F-isogeny to its conjugate A^σ for any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ [Ri2]. The \mathbb{Q}-curves are special cases of \mathbb{Q}-HBV, we know that any \mathbb{Q}-HBV is a simple factor of an abelian variety of $GL(2)$-type [Py]. Now, let A be an abelian variety over \mathbb{Q} of $GL(2)$-type and E the field of fractions of the ring of endomorphisms over \mathbb{Q}. Then E is totally real or CM-field [Mu]. Let F be the center of the \mathbb{Q}-algebra of the ring $M = (\text{End}_{\mathbb{Q}} A) \otimes \mathbb{Q}$ of full ring of endomorphisms of A. Then F is totally real algebraic number field or an imaginary quadratic field. In the first case, M is isomorphic to a matrix algebra $M_r(F)$ or $M_r(D)$ for totally indefinite quaternion algebra over F. In the latter case, M is isomorphic to $M_r(F)$ and A is isogenous over $\overline{\mathbb{Q}}$ to r-tupple of an elliptic curve with complex multiplication by F. We call the latter case CM-type. If A is CM-type, then A is modular [Sh]. So, we discuss non CM case. We may assume that the maximal order \mathcal{O}_E of E acts on A over \mathbb{Q} [Sh]. Let ρ be a prime of \mathcal{O}_E, lying over a rational prime p, $V_p(A) = V_p(A) \otimes E_p$, and $\rho = \rho_p$ the Galois representation of $G = G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $V_p(A)$. Then $\det \rho_p = \varepsilon \cdot \theta_p$ for the cyclotomic character θ_p and a character ε of
finite order. By a famous result of Faltings (Tate-Shavarevich conjecture),
A is modular if and only if \(\rho_{\wp} \) associates to a cusp form of \(\Gamma_{1}(N) \) of weight 2. The field \(E \) is generated by \(q_{l} = \text{Tr}_{E_{\wp}}(a_{l}) \) for primes \(l \nmid p \)-conductor of \(A/Q \) and Frobenius element \(a_{l} \) of \(l \), and \(F \) is generated by \(a_{l}^{2}e^{-1}(l) \) for primes \(l \nmid p \)-cond.of \(A/Q \) \([Mo1][Ri1]\). For a Dirichlet character \(\chi \), let \(A_{\chi} \)
be an abelian variety over \(Q \) obtained by the \(\chi \)-twisting \([Sh]\). Then \(A_{\chi} \) is
determined up to isogeny over \(Q \). We note that \(A \) is modular if and only if \(A_{\chi} \) is modular \([Sh]\).

Now, let \(\delta = \delta(E/F(\zeta_{r^{2}})) \) be the different of \(E \) over \(F(\zeta_{r}) \) for \(r = \text{order of } \epsilon \) and a primitive \(r \)-th character \(\zeta_{r} \). Our first result is as follows. We may assume that \(\mathcal{O}_{E} \) of integers of \(E \) acts on \(A \) over \(Q \). For a prime \(\wp \) of \(\mathcal{O}_{E} \),
let \(\rho = \rho_{\wp} \) be the \(\wp \)-adic representation on the \(\wp \)-divisible points on \(A \), and \(\bar{\rho} \) its reduction mod \(\wp \).

Th 1 Assume that there exists a prime \(\wp \) of \(\mathcal{O}_{E} \) which divides \(\delta \), \(\wp \nmid p \neq 2 \),
and \(A \) has semistable reduction at \(p \). Then,
(1) There exists a quadratic field \(k \) such that \(\bar{\rho} \) is isomorphic to the induced representation \(\text{Ind}_{k}^{Q} \chi \) for a character \(\chi \) of \(G_{k} = \text{Gal}(\bar{k}/k) \).
(2) If \(p \geq 5 \) or \(p = 3 \) and \(k \) is imaginary or \(A \) has super singular reduction at \(p \), then \(A \) is modular.

For its proof, see \([Mo2]\). It has many corollaries. Let \(E \) be a non-CM \(Q \)-curve defined over an extension \(L \) of \(Q \) of \((2, \cdots, 2)\)-type, and \(A = \text{Re}_{L/Q}(E/L) \) is \(Q \)-simple . Define the degree \(N = N_{E} \) of \(E \) by the l.c.m of
the square free degrees of isogenies \(\varphi : E \to E^{\sigma} \) for \(\sigma \in \text{Gal}(L/Q) \). The
following is a partial result for the Ribet's conjecture for \(Q \)-curves \([Ri3]\). This
can be extend to \(Q \)-HBV.

Th 2 If a prime \(p \geq 5 \) divides \(N \) and \(A \) has semistable reduction at \(p \), then \(A \) is modular.

The \(Q \)-curves of degree \(N \) corresponds to \(Q \)-rational points of the modular curves \(X_{0}^{*}(N) = X_{0}(N)/\langle \{W_{l}\} \rangle_{N} \) for Atkin involutions \(W_{l} \) \([El]\). We get many examples, if \(X_{0}^{*}(N) = \mathbb{P}^{1} \). cf \([Py]\).

For other examples, we explain the QM-curves. The QM-curve is a curve \(C \) over \(Q \) of genus 2 such that the ring of full endomorphisms of its jacobian variety \(J(C) \) is an order of indefinite quaternion algebra \(D \) and \(\text{End}_{Q}J(C) \neq \mathbb{Z} \). Hashimoto-Murabayashi calculated many examples \([H-M]\).
Th 3 If a prime \(p \neq 2 \) ramifies in \(D \), and \(C \) has good reduction at \(p \), then \(J(C) \) is modular.

The above results can be extend to more general cases. Using Pyle's [Py] results, we have many examples of modular QM-curves over number fields [H-M]. Further, the condition on reduction at \(p \) can be improved in some cases. Especially, if the abelian variety \(A \) of \(GL(2) \)-type has potentially ordinary reduction at \(p \), the we have a criterion for modular conjecture.

References

[Py] Pyle, E.E., Abelian varieties over \(\mathbb{Q} \) with large endomorphism algebras and their simple components over \(\overline{\mathbb{Q}} \), Thesis, Univ. of California at Barkley.

[Ri3] Ribet, K.A., Abelian varieties over \(\mathbb{Q} \) and modular forms, Proceeding of KAIST Math. Workshop, pp.53-79.

