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"1 Introduction

In this paper, we consider the learning problem of graph languages (sets of graphs). In computa-
tional learning theory, many researchers have investigated learnability or non-learnability for many
objects such as sets of strings, semilinear sets, and formulas. There exists few reports of learning
theory for sets of graphs [7]. There are several ways to define sets of graphs by finite devices. The
main ones are graph grammars [9, 10, 13, 14], graph rewriting systems[5, 12], graph automata[6],
obstruction sets[8], and so on. Using graph grammars as devices to define sets of graphs, there are
merits in applications for practical problems. In this paper, we use a type of graph grammars as a
representation language in learning of graph languages.

One of the well-known graph grammar models is the node-label-controlled (NLC) graph grammars.
The class of regular NLC (RNLC) graph languages is a natural subclass of NLC graph languages. In
this paper, we consider the learning problem of the graph languages generated by restricted RNLC
graph grammars. A graph grammar G is restricted RNLC graph grammar, if G has the following
properties:

(1) G is a symmetric RNLC graph grammar, namely (a,b) € conn iff (b,a) € conn, where conn is
the connection relation,

(2) for all nonterminal label A and all terminal label a, (a,A4) € conn,

(3) the start graph (axiom) consists of a node. '

For example, the set of complete k-partite graphs is generated by a restricted RNLC graph grammar.

In computational learning theory, learning problems are investigated in several learning models.
D. Angluin introduced the notion of exact-learning via queries[2, 3]. We consider exact-learning of
restricted RNLC graph languages via queries. In this paper, we present an algorithm to construct
a restricted RNLC graph grammar which generates a given unknown restricted RNLC graph lan-
guage, using restricted superset and restricted subset queries. Furthermore, we show that for a fixed
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nonnegative integer ¢, this algorithm halts in polynomial time when the Parikh image of the given
unknown restricted RNLC graph languages has at most t-periods.

In section 2, we investigate the relationship between the restricted RNLC graph languages and
those Parikh image in order to show the correctness of our learning algorithm. Let L be a restricted
RNLC graph language and ¥(L) be Parikh image of L. We show that given ¥(L), one can construct
a restricted RNLC graph grammar G such that L(G) = L in polynomial time. In section 3, we
present the learning algorithm for restricted RNLC graph languages.

2 Restricted RNLC graph grammars and Parikh mapping

2.1 Restricted RNLC graph grammars

We consider finite undirected node labeled graphs without loops and without multiple edges. The
set of all graphs over ¥ is denoted by Gs.-

Definition 2.1. For a set of labels &, a graph X (over X) is specified by Vx, Ex, and ¢x, where
Vy is a finite nonempty set of nodes, Ex is a subset of {{z,y} | z,y € Vx,z # y}, called set of
edges, and px is a function from Vx into X, called the labeling function.

Definition 2.2 A node-label-controlled (NLC) graph grammar is a system G = (X, 4, P, conn,
Zqz), where ¥ is a finite nonempty set of labels, A is a nonempty subset of X (the set of terminals),
P is a finite set of pairs (d,Y) where d € £ — A and Y € Gy (the set of productions), conn is a
relation between ¥ and ¥ (the connection relation), and Z,; € Gs, (the aziom).

The set ¥ — A is referred to as the set of nonterminals. A node z is a terminal (nonterminal
respectively) node, if z is labeled by elements of A (X — A respectively).

Now, we explain the method of derivation of a graph. Let G = (X, A, P, conn, Z,;) be an NLC
graph grammar, p = (d, W) be a production in P, X and Y be graphs over X such that Vx nVy =0
and Y be isomorphic to W, and z be a node labeled by d in X. Then, a graph Z is derived from
the graph X by the production (d, W) in the following way:

Step 1: Delete the node z (and the edges which are incident with ) from X, (Notice that z is
labeled by d.)

Step 2: Add to Y instead of z, (Notice that Y is a copy of W.)

Step 3: Connect every node y in Y to the neighbor &’ of z by an edge iff (¢y(y),¢x(z’)) € conn
holds. ’

Consequently, graph Z is obtained, where
Vz =Vx_UVy,
Ez = Ex_, U Ey U{{z',y} | 2’ is a neighborhood of z in X, y € Vy,

(tpy(y), ‘PX(xl)) € conn}a
Px-z() ifz € Vx_g, and
pz(u) = :
ey(u) ifz e Wy.

Then we say that “X concretely derives Z (in G, by the production p )", and denoted by X =g, Z
or simply by X =, Z. A sequence of successive concrete derivation steps in G

D : Xo =pi, X1=pi, 0 Fpi, Xn
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where n > 1 and the sets Vx, and Vy, (1 < ¢ < n) are pairwise disjoint, is referred to as a concrete
derivation in G (from X, to X,,), and the sequence of applied productions (pi,, pi,, - - ,Pi,) is termed
applied productions (in the derivation).

A graph X directly derives a graph Z (in G), denoted by X ~¢ Z, if there is a graph Z’ such that
Z' is isomorphic to Z and X concretely derives Z’ in G. The symbol ~»¢ denotes the reflexive and
transitive closure of ~»g. If X ~7 Z, then we say that X derives Z (in G). The graph language
generated by G, denoted by L(G), is the set {X € Ga | Zoz ~& X}. A set L of graphs is an NLC
graph language, if there is an NLC graph grammar G such that L = L(G).

Definition 2.3 A regular NLC (RNLC) graph grammar is an NLC graph grammar G = (X, A, P,
conn, Z4z) such that every production of G is either of the form (A, H) or the form (A, a), where
AeX—-A,a€ A, H=(V,E)is a graph such that V = {z,y}, pu(z) = B € X - A, ¢ou(y) = a,
E = {{z,y}}.

We denote the production which has form of (A, H) by (A, {B,a}). An RNLC graph grammar G
is “symmetric” if (a,b) € conn iff (b,a) € conn. For any RNLC graph grammar G, |G| denotes the
sum of the number of labels and the number of productions.

Definition 2.4 A graph grammar G is said to be restricted RNLC graph grammar if G has the
following properties:

(1) G is a symmetric RNLC graph grammar,

(2) for all nonterminal label A and all terminal label a, (a,A) € conn,

(3) the start graph (axiom) consists of a node.

Example 2.1 Let G.; = (X, A, P, conn, Z,,) be a restricted RNLC graph grammar, where ¥ = {
5,A,B,C,D,E,F,G,ay, ay, az}, A = {a1,az,a3}, conn = {(a1, az), (az, a1),(az,as),(as,az)} U
{(X,Y)|X is a nonterminal label, Y is a terminal label } (U{(Y,X)|X is a nonterminal label, Y is
a terminal label } ), Z,, consists of a node with label S, and P is depicted in Fig. 1.

B a3 FE a3 a2 G @2
($, 00| o—0| o | o—o0)

C a3 A G2 B a3 az
(B,o0—0) (¢,0—0) (A,0—0]| o)
F a2 D @ FE a3 (G a2
(E,0—0) (F,o0—0) (D,o0—0| 0—0)
a
(¢, o)

Figure 1:

Then graphs depicted in Fig. 2 can be generated by G;.
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as a2
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G a2 asz az

Figure 2:

2.2 Parikh mapping of restricted RNLC graph languages

In this section, we give the definition of Parikh mapping of restricted RNLC graph languages and
some related properties which will be used in this paper.

Definition 2.5 Let us fix the set of terminal labels A = {a1,...,a,} and define a mapping, called
Parikh mapping, from Ga into N™ given by

V(H) = (§a: (H), far (H), .. . Ban (H)),

where f,,(H) denotes the number of occurrences of a; in the graph H. For any L C Gp, define
V(L)={Y(H)| H € L}. Y(L) is called Parikh image of L.

Definition 2.6 A set of the form
M ={ao+nio1+ -+ npan :n; > 0for 1 < j < m},

where ag, ..., an, are elements of N™, is said to be a linear subset of N™. Each o; is called period of
M. A semilinear is a finite union of linear sets.

Proposition 2.1 For any RNLC graph language L, ¥(L) is a semilinear set.

Proof. Two languages L; and Ly are called letter equivalent if ¥(L;) = ¥(Ly). It is known that
for any language L ¥(L) is a semilinear set if and only if L is a letter equivalent to a regular set.
It is clear that any graph language generated by an RNLC graph grammar is letter equivalent to a
regular set by Definition 2.3. O

For any terminal label ¢ € X, a production p € P is called a-productionif a appears in right-hand
side of p.

Proposition 2.2 Let G, G be restricted RNLC graph grammars with a common connection rela-

tion, D1 = (Pi,, Piy, - - -, Pin,) be an applied productions in a derivation in Gy and Dy = (%511 izs*** 1 Gin)
be an applied productzons in a derivation in Gy. If for any terminal label a the number of appear-

ances of a-production in D, is equal to one of a-production in Dy, then the graph by derived by D,

is isomorphism to the graph derived by D,.
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Proof. Let G be a restricted RNLC graph grammar with a connection relation conn and H be a
graph generated by G. And let a and b be node labels in H, z be a node with label ¢ in H and y
be a node with label b in H.

By the conditions (1) and (3) of Definition 2.4, without loss of generality we can assume that z is
yield before y is yield. Let z be the nonterminal node such that y is yield by rewriting of z.

First we will show the following Fact 1 :

Fact 1 : z is adjacent to y iff (a,b) € conn.

For such nodes z, y, and 2, the following property hold :

z is adjacent to y iff

(1) z is adjacent to z, and

(2) (b,a) € conn.

The condition (2) of Definition 2.4 guarantees that z is adjacent to z. Hence Fact 1 holds.

Let H; be the graph generated by the derivation D; and Hj be the graph generated by Ds.
Since for any terminal label a the number of appearances of a-production in D; is equal to one of
a-production in Dy, we can obtain the following Fact 2 :

Fact 2 : ¥(H,) = ¥Y(H,).
Therefore, from fact 1 and 2, H; is isomorphic to H,. ad

The above proposition means that a graph in a restricted RNLC graph language is characterized
by the connection relation and the number of applications of a-production for each terminal label
a. Hence a restricted RNLC graph language is also characterized by the number of nodes with label
a for each terminal label @ when the connection relation is fixed. Therefore, we can obtain the
following lemma.

Lemma 2.3 Let G1, Gy be restricted RNLC graph grammars with a common connection relation.
If ¥(L(G1)) = U(L(G7)) then L(Gy1) = L(G2).

Proof. It is sufficient to show L(G1) C L(G3). Let H be a graph in L(Gy). From ¥(L(G1)) =
U(L(Gy)), there exist a graph H' in L(G;) such that W(H') = Y(H). Hence, from Proposition 2.2
and the condition that Gy, G2 have a common connection relation, H' is isomorphism to H. ad

A regular string grammar G is CNF left linear if every production of G is either of the form A — Ba
or the form A — a for some nonterminal A, B and terminal a.

Lemma 2.4 Let L be a restricted RNLC graph language with a set of terminal labels A. When a
semilinear set S which is the Parikh image of L and conn are given, one can construct a restricted
RNLC graph grammar G = (NT U A, A, P, conn, Z) such that L = L(G).

Proof. We present a polynomial time algorithm MG to construct a restricted RNLC graph gram-
mar G = (NT U A, A, P,conn, Z) such that L = L(G) when a semilinear set $ such that S = ®(L)
are given as input. Assume that S = My U---UM,y,. Let M; = {04, +niy iy + -+ + 14, i, | ng; >0
for 1 < j < r;} foreach 1 < ¢ < m. Let yio, ¥iys- -5 Yo, be strings in X* whose images under
U are, respectively, aj,, i, ,- -+, 0, . First MG constructs left linear string grammar G" with the
productions:

S = Ay || Am,

Ai = A yij | yip forall 1< e <m, 1 < j <
Next MG constructs a CNF left linear string grammar G’ such that L(G') = L(G") from G". Fi-
nally, MG constructs graph productions of P form each string production in G’ by following way

. Transform a string production form of A — Ba; (A — g;) into the graph production form of
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(A,{B,a;}) ((A,a;) respectively). Let NT be the set of nonterminal labels appearing in P. MG
outputs G = (NT UA, A, P,conn, Z). It is clear that MG halts in polynomial time. From Lemma
2.3, we can obtain that the output G of MG generates L. ' ’ a

The above G., in the example has the following semilinear set M; U Mj:

0 1
M = 1 + ny, 1 , M= 1 + no,; 1
0 2 0 1

From above lemma, if we know appropriate conn, we can obtain a restricted RNLC graph grammar
such that L = L(G).

3 Learning of restricted RNLC graph languages‘

3.1 The problem

Angluin introduced the notion exact-learning via queries[2, 3]. In this paper, we consider the
problem of learning restricted RNLC graph languages via queries. Suppose L, be a given unknown
target graph language. We assume that the set of terminal labels A are known.

The following two types of queries are used as access of an unknown target graph languages in
learning procedure: ‘

1. Restricted subset queries: The input is a conjectured restricted RNLC graph grammar G, and
the output is yes if L(G.) C L, and no otherwise.

2. Restricted superset queries: The input is a conjectured restricted RNLC graph grammar G,
and the output is yesif L, C L(G.) and no otherwise.

The answer for unrestricted version of each type of queries is not only yes or no but also with a
counterezample in case of no, where the counterexample is an element in L, — L(G.) (L(G.) — L)
if the type of the query is subset query (superset query respectively).

In the rest of this section, we consider the problem to construct a restricted RNLC graph gram-
mar G which generates the unknown graph languages using restricted subset queries and restricted
superset queries. When we consider the efficiency of learning procedure, the size of the learning
problem have to be decide. Usually, the size of minimum representation of target language is used
as the size of the learning problem. (For example, each of regular grammar, regular expression, and
deterministic finite automata is a representation set for regular sets.) Occasionally, the efficiency of
learning procedure depends on what representation set are used (for example, see [3]). For instance,

the learning problem of regular sets from membership and equivalence queries’

using deterministic
finite automata is efficient[2], but if RP # NP, one using nondeterministic finite automata is not
efficient[4]. We use the restricted RNLC graph grammars as the representation of graph languages

L and min{|G||L(G) = L} as the size of L.

'Let L, be an unknown target language. Membership query: The input is an instance z and the output is yes
if £ € L. and no otherwise. Equivalence query: The input is a conjectured representation L. and the output is
yes if L, = L. and no otherwise. When the answer is no, a counterezample is also supplied, that is, an instance
¢ € (Lu — Lc) U (Le — Lu). The choice of counterexamples is assumed to be arbitrary.
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3.2 The learning algorithm

Here, we demonstrate our learning algorithm for restricted RNLC graph languages using restricted
superset and restricted subset queries, which is called LA-rRNLC. Takada showed the learning
algorithm LA-SLS for the family of semilinear sets from restricted subset and restricted superset
queries[11]. Our learning procedure LA-rRNLC uses Takada’s LA-SLS as a subprocedure. Let L
be an unknown target restricted RNLC graph language. Since the set of terminal labels A is fixed,
the number of connection relations k is 2!81°2, Let connq,conny,---,conni be distinct connection
relations each other. First, for any ¢ € {1,...,k}, we define a learning algorithm LA-rRNLC_conn;
to output a restricted RNLC graph grammar G which generates an unknown target restricted RNLC
graph language, when conn; is the real connection rule. Each LA-rRNLC_conn; simulates LA-SLS.
When LA-SLS makes a restricted subset (superset) query with a semilinear set S., LA-tRNLC_conn;
constructs a restricted RNLC graph grammar G, = (NT U A, A, P,conn;,Z) from S using the
procedure MG described in the proof of Lemma 2.4, makes a restricted subset (superset) query
with G, and return the answer of the query to LA-SLS (See Fig. 3). If conn; is equivalent to

Learning Procedure LA-rRNLC_conn;
Oracle for Queries
LA-SLS —2%— Mg e Querl
about L
yes/no
Figure 3:

the connection relation of the unknown target, LA-rRNLC_conn; outputs a restricted RNLC graph
grammar G such that L = L(G) and consumes polynomial time of the running time of LA-SLS from
Lemma 2.4.

Our learning algorithm LA-rRNLC is as follows:

Procedure LA-rRNLC

j:=1

repeat
7-th step of LA-tRNLC_conn,
j-th step of LA-rRNLC_conn,

j-th step of LA-tRNLC_conn;

7-th step of LA-rRNLC_conny
=it
until some LA-TRNLC_conn; halts and outputs a grammar G
output G
end.
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LA-rRNLC halts and outputs a correct grammar, because conn; is equivalent to the connection
relation of the unknown target. Hence, we can obtain the following lemma. .

Lemma 3.1 Using restricted superset queries and restricted subset queries for an unknown restricted
RNLC graph language L., the learning algorithm LA-rRNLC eventually terminates and outputs a
restricted RNLC graph grammar G such that L(G) = L,

Let ¢ be a nonnegative integer. We say that a semilinear set S is t-periods semilinear set if S is
represented by a finite union of linear sets which have at most ¢ periods. Takada showed that the
learning algorithm LA-SLS identifies any ¢-periods semilinear sets S of N* from restricted subset
and restricted super set queries in polynomial time where k is a fixed dimension[11]. From this fact
and Lemma 3.1, we obtain the following theorem.

Theorem 3.2 Let t be a fized nonnegative integer. For any restricted RNLC language L, whose
Parikh image has at most t-periods, the learning algorithm LA-rRNLC halts and outputs a restricted
RNLC graph grammar G such that L(G) = L, using restricted superset queries and restricted subset
queries in polynomial time.
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