
Variable Ordering and the Size of Ordered Binary Decision
Diagrams Representing Threshold Functions

Yasuhiko TAKENAGA, Takayuki KANEDA and Shuzo YAJIMA

武永康彦 金田高幸 矢島脩三

Faculty of Engineering,
Kyoto University, Kyoto 606-01, Japan

Abstract The relation between the variable ordering and the size of OBDD’s representing

threshold functions is considered in this paper. Several simple operations to change the variable

ordering are dealt with: 1) reverse the ordering and 2) move a variable to another level or exchange
two variables. We have shown that, when the variable ordering is reversed, the difference of their

sizes is at most $n-1$ , where $n$ is the number of variables. We have also proved that the OBDD size

is at most doubled by the jump-down operation. It is very small compared with the case of general
Boolean functions.

1 Introduction

It is a very fundamental problem to represent and manipulate Boolean functions efficiently.

Many data structures have been studied, such as truth tables, logic formulae, cube representations,

logic circuits, etc. An Ordered Binary Decision Diagram $(\mathrm{O}\mathrm{B}\mathrm{D}\mathrm{D})[1,2]$ is a directed acyclic graph rep-

resenting a Boolean function, and it is considered as a restricted branching program. OBDD’s have
the properties that many practical Boolean functions are represented in feasible size, that Boolean
operations are executed efficiently, and that there exists a canonical representation when a variable

ordering is fixed. According to these good properties, OBDD’s are widely used in many applications

especially in computer-aided design of logic circuits.
However, even though many practical Boolean functions can be compactly represented by

OBDD’s, there exist Boolean functions that require exponential size of the number of variables.
Thus, it is an important problem to clarify which functions can be or cannot be represented in

small size. The size of an OBDD is largely dependent on the variab-le ordering. It may vary ex-
ponentially when the variable ordering is changed. For example, the size of an OBDD representing
the output of an $n$-bit comparator with inputs $x=(x_{1}, X_{2}, \ldots, x_{n}),$ $y=(y_{1}, y_{2}, \ldots, y_{n})$ is linear to

the number of input variables when the variable ordering is $x_{1}y1^{X}2y2\ldots xnyn$ . However, the size
grows exponentially when the variable ordering is $x_{1}x_{2}\cdots x_{n}y_{1}y2\ldots y_{n}$ . In general, it seems to

require exponential time to find the optimal variable ordering to minimize the OBDD $\mathrm{s}\mathrm{i}\mathrm{Z}\mathrm{e}[4]$ . On

shared OBDD’s, this problem is proved to be $\mathrm{N}\mathrm{p}_{- \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}}1\mathrm{e}\mathrm{t}\mathrm{e}[5]$ . Hence, there are quite many heuristic

approaches to find a good variable ordering $\mathrm{e}.\mathrm{g}.[3,6,7,8]$ .
Our concern in this paper is to investigate the relation between the variable ordering and the

size of OBDD’s representing threshold functions. A threshold function is a Boolean function whose
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output is defined by whether the sum of weighted inputs is greater than the threshold value or not.
Because of the importance of threshold functions, many theoretical approaches have been made, such
as the number of threshold $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{s}}[9]$ , the maximum weight of threshold $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}[10]$ , realization
of a Boolean function by a network of threshold functions[11].

On the size of OBDD’s representing threshold functions, Hosaka et al. have shown several results
[12]. It is shown that there exist a family of threshold functions which require $\Omega(n2^{\sqrt{n}/2})$ size even
if any variable ordering can be chosen to minimize the OBDD size. On threshold functions, the
non-increasing order of weights seems to be a good variable ordering because larger weights affect
more to the sum of weights. However, they have also shown that the non-increasing order of weights
is not always a good variable ordering, that is, the size can be exponentially larger compared with
the case of the optimal variable ordering.

In this paper, we deal with several simple operations to change the variable ordering: 1) reverse
the ordering and 2) move a variable to another level or exchange two variables. The reversed ordering
is similar to the original ordering because, for any variable, the variables in adjacent levels are not
changed at all. We show that the difference of their sizes is at most $n-1$ , where $n$ is the number
of variables. The operations in 2) are used in several heuristic algorithms for minimizing OBDD’s.
Bollig et al. have shown the upper and lower bounds of the OBDD size after the operations for
general Boolean $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{S}[8]$ . Here we show that some of the bounds are improved when we consider
only threshold functions.

This paper is organized as follows. In Section 2, definitions on threshold functions and OBDD’s
are given. In Section 3, we introduce basic properties of OBDD’s representing threshold functions.
In Section 4, we study the relation between the size of OBDD’s representing threshold functions and
variable orderings. Conclusions and future works are noted in Section 5.

2 Preliminaries

2.1 Threshold Functions

Let $x=(x_{1}, X_{2}, \ldots, x_{n})(\in\{0,1\}^{n})$ be a set of variables, and $f(x)$ be a Boolean function of $n$

variables. $f(x)$ is a threshold function if and only if $f(x)$ can be represented by a set of $n$ weights
$w=(w_{1}, w_{2}, \ldots, w_{n})(\in\Re^{n})$ and a threshold value $t(\in\Re)$ as follows.

$f(x)=\{$
$0$ $(if\Sigma^{n}i=1wi. xi<i)$

1 $(if\Sigma^{n}i=1w_{i}\cdot xi\geq t)$

In the following of this paper, as in this equation, $w_{i}$ is the weight of a variable $x_{i}$ .
If a threshold function $f(x_{1}, x_{2}, . .., x_{n})$ is represented by $w_{1},$ $w_{2},$ , . . , $w_{n}$ and $t,$ $f(\ldots,\overline{x_{p}}, \ldots)$ is

represented by $w_{1},$ $\ldots,$ $w_{p-1},$ $-w_{p’ p}w+1,$ $\ldots,$ $wn$ and $t-w_{p}$ . As the size of an OBDD does not change
by the negation of a variable, we can assume without loss of generality that all the weights are

positive.
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2.2 Ordered Binary Decision Diagram (OBDD)

An Ordered Binary Decision Diagram (OBDD) $[1, 2]$ is a directed acyclic graph that represents a

Boolean function. The nodes of an OBDD consist of variable nodes and two value nodes. One of the

variable nodes is a source and the value nodes are sinks. Two value nodes are labeled by $0$ and 1

respectively. Each variable node is labeled with a variable and has two outgoing edges, which are

called a $\mathit{0}$-edge and a 1-edge. Let label $(v)$ be the label of node $v$ . Let $edge_{0}(v),$ $edge_{1}(v)$ denote

the nodes pointed by the $0$-edge and the 1-edge of node $v$ respectively. There is a total ordering
$\pi=(\pi(1), \ldots, \pi(n))$ of variables for an OBDD, which is called a variable ordering. On every path from

the root node to a value node, each variable appears at most once according to the total ordering.
$\pi(i)$ is called the level of $x_{i}$ or the level of a node $v\mathrm{s}.\mathrm{t}$ . $label(v)=x_{i}$ .

The value of the function is given by traversing from the source to a value node. At a variable

node, one of the outgoing edges is selected according to the assignment to the variable. The value

of the function is $0$ if the label of the value node is $0$ , and 1 if the label is 1. The Boolean function

that is represented by node $v$ , denoted by $f_{v}$ , is defined as follows by Shannon’s expansion:

$f_{v}=\{$
label $(v)$ (if $v$ is a value node),
$f_{v}=label(v)\cdot f_{edge_{1(v)}}+\overline{label(v)}\cdot fedge_{0}(v)$ (otherwise).

An OBDD represents the function represented by the source. The size $S$ of an OBDD is the total

number of nodes. The width of the level corresponding to $x_{i}$ , denoted as $W_{i}$ , is the number of nodes

labeled by $x_{i}$ .
When two nodes $i$ and $j$ have the same label and represent the same function, they are called to

be equivalent nodes. When $edge_{1}(i)=edge\mathrm{o}(i)$ , node $i$ is called to be a redundant node. An OBDD

is called a dense OBDD when all the edges from the variable nodes point nodes in the next level.

A dense OBDD which has no equivalent nodes is called a quasi-reduced OBDD [13]. An OBDD

which has no equivalent nodes and no redundant nodes is called a reduced OBDD. It is known that

a Boolean function is uniquely represented by a reduced OBDD or a quasi-reduced $\mathrm{O}\mathrm{B}\mathrm{D}\mathrm{D}’$ , provided

that the variable ordering is fixed. In the following, we consider quasi-reduced $0!i$BDD’s when it is

not particularly specified.

3 OBDD’s Representing Threshold Functions

We define the weight of a path as the sum of weights of variables corresponding to nodes whose

outgoing 1-edges are on the path. The temporary sum of node $v$ for a path is the weight of the path

from the source to node $v$ . The temporary sum set of node $v$ , which is denoted as $\mathrm{T}\mathrm{S}(v)$ , is the set

of the temporary sums of node $v$ for all paths from the source to node $v$ . Note that the temporary

sums of a sink whose label is 1 are at least the threshold value.

Then the OBDD’s representing threshold functions have the following properties[12]. We assume

without loss of generality that the variable ordering is $X_{1},$ $X_{2,}.\ldots,$ $X_{n}$ .
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Lemma 3.1 On the quasi-reduced OBDD representing a threshold function, for two different nodes
$u,$ $v$ in the same level, $\max \mathrm{T}\mathrm{S}(v)<\min \mathrm{T}\mathrm{S}(u)$ , or $\max \mathrm{T}\mathrm{S}(u)<\min \mathrm{T}\mathrm{S}(v)$ .

This lemma means that, on a quasi-reduced OBDD, the temporary sum set can be represented
with the smallest and the largest temporary sums of the node. The set $P$ of all the temporary sums
that appear in the nodes of level $s+1$ is written as

$P=$ { $\sum_{a\in A}$
a $|A\subseteq\{x_{1},$ $x_{2,S}\ldots,$$X\}$ }.

Let $p_{1},p_{2},$ $\ldots,p_{l}$ be all the elements of $P$ arranged in the increasing order. The temporary sum set
whose smallest and largest elements are $p_{i}$ and $p_{j}(i<j)$ is denoted as $p_{i}\sim p_{j}$ .
Lemma 3.2 On the quasi-reduced OBDD representing any $n$-variable threshold function, the width
of level $i(2\leq i\leq n)$ satisfies

$W_{i} \leq\min(2W_{i-1},2Wi+1^{-1})$ .

Using these properties, Hosaka et $\mathrm{a}1.[12]$ have shown the following results on the relations between
the variable ordering and the size of OBDD’s.
Theorem 3.3 There exist threshold functions which require $\Omega(n2^{\sqrt{n}/2})$ size even if any variable
ordering can be chosen to minimize the OBDD size.
Theorem 3.4 There exists a threshold function which is represented by an OBDD of polynomial
size and, however, requires exponential size when the variable ordering is the non-increasing order of
the absolute values of their weights.

4 Variable Ordering and the Size of OBDD’s

In this section, we consider the size of OBDD’s representing threshold functions when the
variable ordering is changed according to some simple operations. We assume without loss of gen-
erality that the original variable ordering is $X_{1},$ $X_{2},$

$\ldots,$ $Xn$ . Let the width of the level corresponding
$x_{i}$ and the total size of the OBDD be $W_{i},$ $S$ in the original ordering, and let them be $W_{i}^{*},$ $S^{*}$ after
changing the variable ordering. $W_{n+1}$ is the number of value nodes and equals 2.

4.1 Reversed Variable Ordering

Let $R_{s}=\{w_{1}, w_{2}, \ldots, w_{S}\}$ and $R_{s}^{l}=\{w_{S+}1, w_{S+2}, \ldots, w\}n$ . Let $P,$ $Q$ be the sets of weights composed
of the weights in $R_{s},$ $R_{s}’$ respectively. That is,

$P=$ { $\sum_{a\in A}$
a $|A\subseteq R_{s}$ }

$Q= \{\sum_{b\in B}b|B\subseteq R_{s}’\}$ .

Let $p_{1},p_{2},$ $\ldots,p_{l}$ and $q_{1},$ $q_{2},$ $\ldots \text{ノ}.q_{m}$ be all the elements of $P$ and $Q$ arranged in the ascending order,
respectively. If $x_{1},$

$\ldots,$
$x_{S}$ appear in levels 1 to $s,$ $P$ represents all the possible temporal sums in level
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$s+1$ . $p_{1},p2,$ $\ldots,pl$ are classified into several temporal sum sets by $Q$ . We denote the width of level

$s+1$ as $W_{PQ}$ because it is determined by $P$ and $Q$ .
We first consider to change the variable ordering so that $x_{s+1},$ $\ldots,$

$X_{n}$ are in levels 1 to $n-s$ and

$x_{1},$
$\ldots,$

$x_{s}$ are in levels $n-s+1$ to $n$ . In this case, $Q$ represents all the possible temporal sums in

level $n-s+1$ . Let the width of level $n-s+1$ after the operation be $W_{QP}$ . We investigate in the

relation between $W_{QP}$ and $W_{QP}$ .
Theorem 4.1 $W_{QP}$ and $W_{QP}$ have the following relation.

1. If $p_{l}<t$ and $q_{m}\geq t$ , $W_{QP}=W_{PQ}+1$ .
2. If $p_{l}\geq t$ and $q_{m}<t$ , $W_{QP}=W_{PQ}-1$ .
3. If $p_{l}<t,$ $q_{m}<t$ or $p_{l}\geq t,$ $q_{m}\geq t$ , $W_{QP}=W_{PQ}$ .

Proof Let $p_{i}\sim pj,$ $pj+1\sim p_{k}$ be temporal sum sets of nodes in level $s+1$ of the original OBDD.

We call such nodes adjacent pair of nodes. For the elements of $p_{j+1}\sim p_{k}$ , the following relation holds

for some $i’$ .

$\{$

$pj+1+q_{i}’\underline{>}t$

$p_{k}+q_{i}’-1<t$

Note that the second inequality is not necessary when $i’=1$ . For all the elements in $p_{j+1}\sim p_{k}$ ,

$q_{i’}$ makes the total sum of weights larger than or equal to $t$ and $q_{i’-1}$ makes it smaller than $t$ .
$pj+1+q_{m}<t$ never holds because $pj+1\neq p_{1}$ .

Similarly, considering $p_{i}\sim p_{j}$ , the following relation hols for some $j’$ .

$\{$

$p_{i}+q_{j+1}’\geq t$
$(i^{J}<j’)$

$p_{j}+q_{j}’<t$

Note that the first inequality is not necessary when $j’=m$ .
From the above inequalities, we can observe that the following inequalities hold in any case.

$\{$

$p_{j}+q_{j}’<t$

$p_{j+1}+q_{i}’\geq t$

This means that, for all the elements in $q_{i’}\sim q_{j’},$ $pj$ makes the total sum of weights smaller than $t$

and $p_{j+1}$ makes it larger than or equal to $t$ . That is, after changing the variable ordering, $q_{i^{l}}\sim q_{j’}$

must be represented by a single node in level $n-s+1$ . The remaining equations shows that $q_{i’-1}$

and $q_{j’+1}$ are represented by other nodes if they exist. Consequently, a node in level $n-s+1$ after

changing the variable ordering is determined by an adjacent pair of nodes in level $s+1$ of the original
variable ordering.

Now we consider the case 1 of the theorem, that is, the case when $p_{l}<t$ and $q_{m}\geq t$ . As

$p_{1}+q_{m}=q_{m}\geq t,$ $j’<m$ for any adjacent pair of nodes. As $p_{l}+q_{1}=p_{l}<t,$ $i^{J}>1$ for any

adjacent pair of nodes. Therefore, $W_{QP}=(W_{PQ}-1)+2=W_{PQ}+1$ . Similarly, in case 2, as

$p_{1}+q_{m}<t,$ $p_{l}+q_{1}\geq t$ , there are adjacent pairs of nodes which make $i’=1$ or $j^{J}=m$ . In case 3,

either $i^{J}=1$ or $j^{l}=m$ is satisfied by an adjacent pair of nodes. $\square$
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Theorem 4.2 Consider two OBDD’s representing the same function whose variable orderings are
$x_{1}x_{2}\ldots X_{n}-1x_{n}$ and $x_{n}x_{n}-1\cdots x2X_{1}$ . Then the difference of their sizes is at most $n-1$ , which is an
optimal upper bound.
Proof From Theorem 4.1, $|W_{s+1}-W_{s}^{*}|\leq 1$ for any $s(1\leq s\leq n-1)$ . Clearly, $W_{1}=W_{n}^{*}=1$ .
Then the difference of the size is at most $n-1$ .

Next, we show the optimality of this upper bound. It is obvious that the following threshold
function achieves the upper bound.

$\{$

$w_{1}=1$

$w_{i}=0(2\leq i\leq n)$

$t=1$

Under the original variable ordering, $W_{s}=2(2\leq s\leq n)$ and the total size is $2(n-1)+3=2n+1$ .
After the variable ordering is reversed, $W_{s}^{*}=1(1\leq s\leq n)$ and the total size is $n+2$ . $\square$

When we reverse the variable ordering, the difference of their sizes can be easily computed using
Theorem 4.1. Let two integers $p,$ $q(1\leq p\leq n-1,1\leq q\leq n-1)$ satisfy the following inequalities.

$\{$

$\sum_{i=1}w_{i}p<t$

$\sum_{i=1}^{p+}1w_{i}\geq t$

and $\{$

$i=n-q \sum_{+1}^{n}wi<t$

$i=n- \sum_{q}^{n}w_{i}\geq t$ .

Then the number of variables $x_{s}(1\leq s\leq n-1)$ that satisfy case 1 of Theorem 4.1 is $\min(p, n-q-1)$ .
Similarly, $\min(q, n-p-1)$ variables satisfy case 2, and the others are classified to case 3. Therefore,

$S^{*}=S+ \min(p, n-q-1)-\min(q, n-p-1)$ .

From this equation, the following relation is obtained.

$S<S^{*} \mathrm{i}\mathrm{f}min(p, n-q-1)>\min(q, n-p-1)$

$S>S^{*} \mathrm{i}\mathrm{f}min(p, n-q-1)<\min(q, n-p-1)$

$S=S^{*} \mathrm{i}\mathrm{f}min(p, n-q-1)=\min(q, n-p-1)$

The following corollary is a special case of this argument.
Corollary 4.3 Let the threshold value be $t=\Sigma_{i=1}^{n}w_{i}/2$ . Let the size of the OBDD be $S_{1}$ when the
variable ordering is the non-decreasing order of their weights, and be $S_{2}$ when the variable ordering
is the non-increasing order of their weights. Then $S_{1}\leq S_{2}$ is satisfied.
Proof We can assume without loss of generality that $w_{1}$ $\leq w_{2}$ $\leq$ ... $\leq w_{n}$ . When all the
weights are equal, $S_{1}=S_{2}$ . Otherwise,

$\mathrm{L}^{n/2}\sum_{i=1}^{\rfloor}w_{i}<t$ and $\sum_{i=\lfloor n/\mathrm{J}}n2+1wi>t$ ,

which means that $p\geq\lfloor n/2\rfloor$ and $n-q+1>\lfloor n/2\rfloor+1$ . Thus, $\min(p, n-q-1)\geq\lfloor n/2\rfloor$ . That
is, case 1 of Theorem 4.1 is satisfied for more than or equal to a half of $n-1$ possible $s$ . Therefore,
$S_{1}\leq S_{2}$ . $\square$
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4.2 Jump and Exchange of Variables

Bollig et $\mathrm{a}1.[8]$ considered how the size of OBDD’s can change by the following simple operations on
the variable ordering.

$\bullet$ jump-up $(i,j)$ : Move the variable $x_{i}$ to level $j(j<i)$ .

$\bullet$ $jump-d_{ow}n(i,j)$ : Move the variable $x_{i}$ to level $j(j>i)$ .

$\bullet$ swap$(i-1, i)$ : Exchange two adjacent variables $x_{i-1}$ and $x_{i}$ .

$\bullet$ exchange$(i,j)$ : Exchange two variables $x_{i}$ and $x_{j}$ .

The swap operation can be considered as a special case of the other operations. They showed

that the following relations are satisfied on the size of reduced OBDD’s representing any function.

$\{$

jump-up: $S^{1/2}\leq S^{*}\leq 2S$

jump-down : $S/2\leq S^{*}\leq S^{2}$

swap: $S/2\leq S^{*}\leq 2S$

exchange: $S^{1/2}\leq S^{*}\leq S^{2}$

In this section, we consider the cases where the variable ordering is changed by the above opera-

tions on the quasi-reduced OBDD’s representing threshold functions.
Optimal upper bounds for jump-up $(i,j)$ and swap$(i-1, i)$ operations are obtained without consid-

ering the properties of OBDD’s representing threshold functions. The following theorem is proved in
a similar manner as [8]. The only difference is that we consider quasi-reduced OBDD’s, not reduced
OBDD’s.
Theorem 4.4 The size of the OBDD after the jump-up $(i,j)$ operation satisfies

$S^{*}$ $\leq$ $W_{1}+\cdots+W_{j}+2(W_{j}+\cdots+W_{i-1})+W_{i+1}+\cdots+W_{n}+W_{n+1}$

which is an optimal upper bound.

Proof The variable ordering is changed by the operation as follows.

(before) $x_{1},$
$\ldots,$ $x_{j-}1,$ $x_{j},$ $x_{j1}+,$ $\ldots,$ $Xi-1,$ $x_{i},$ $x_{i}+1,$ $\ldots,$

$X_{n}$

(after) $x_{1},$
$\ldots,$ $X_{j-1},$ $X_{i},$ $Xj,$ $X_{j+i-1}1,$$\ldots,$ $x,$ $x_{i1}+,$ $\ldots,$ $Xn$

It is clear that $W_{k}^{*}=W_{k}(k\leq j-1, k\geq i+1)$ , because the set of variables in levels less than $k$

is not changed by the operation. By the same reason, we have $W_{i}^{*}=W_{j}$ .
For $j\leq k\leq i-1,$ $level(x_{k})$ is increased by 1. By inserting $x_{i}$ in a higher level, each subfunction

$f|_{x_{1}=a_{1},\ldots,x_{k1}=}-ak-1(a_{1}, \ldots, a_{k-1}\in\{0,1\})$ can make at most two different subfunctions represented

as $f|_{x_{1}=a_{1},\ldots,x}k-1=a_{k}-1,xt=ai(a_{i}\in\{0,1\})$ . Hence, $W_{k}^{*}\leq 2W_{k}$ for these variables. It leads to the upper

bound.
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Next, we prove the optimality of the upper bound. We can see that the bound is achieved for the
following function and jump-up$(n/2+1, n/2)$ operation.

$w_{i}=$
$t= \sum_{i=1}^{n}w_{i}/2=2^{\frac{n}{2}}-1$

In this case, the widths of each level of these OBDD’s are as follows.

$W_{k}^{*}=W_{k}(1\leq k<j=n/2, n/2+2=i+1\leq k\leq n)$

$W_{n/2+1}^{*}=W_{n/2}=2^{n/21}-$

$W_{n/2}^{*}=2^{n/2}$

The widths can be computed in the same manner as Theorem 6 of [12]. Thus, we can easily check
that

$s*$ $=$ $W_{1}+\cdots+W_{n}+2/2W_{n/}2+W_{n}2+2+\cdots+W/n+1\cdot\square$

The upper bound for swap operations is obvious from this theorem because swap$(i-1, i)$ is
equivalent to jump-up$(i, i-1)$ .
Theorem 4.5 The size of the OBDD after the swap$(i-1,i)$ operation satisfies

$s*$ $\leq$ $W_{1}+\cdots+W_{i-2}+3W_{i-}1+Wi+1+\cdots+Wn+W_{n}+1$

which is an optimal upper bound.
Next, we consider jump-down$(i,j)$ operations. Properties of OBDD’s representing threshold

functions are used to reduce the upper bound in the next theorem.
Theorem 4.6 The size of the OBDD after the jump-down $(i,j)$ operation satisfies

$s*$ $\leq$ $W_{1}+\cdots+W_{i}+(2W_{i2^{-}}1+)+\cdots+(2Wj+1-1)+W_{j}1+\cdots++W_{n+1}$

which is an optimal upper bound.
Proof The variable ordering is changed by the operation as follows.
(before) $x1,$ $\ldots,$ $xi-1,$ $X_{i},$ $Xi+1,$ $\ldots,$ $xj-1,$ $x_{j},$ $x_{j}+1,$ $\ldots,$ $xn$

(after) $x_{1},$
$\ldots,$ $x_{i-1},$ $xi+1,$ $\ldots,$ $xj-1,$ $xj,$ $xi,$ $Xj+1,$ $\ldots,$ $xn$

Similar to the case of Theorem 4.4, $W_{k}^{*}=W_{k}(k\leq i-1, k\geq j+1)$ , and also $W_{i+1}^{*}=W_{i}$ .
Now we consider $W_{i+2}^{*}$ . Let $R_{1},$ $R_{2}$ be the following sets of weights.

$R_{1}=\{w_{1}, \ldots, w_{i-}1, w_{i1}+\}$ $R_{2}=\{wi+2, \ldots, w\}n$

Let $P,$ $P^{J},$ $Q,$ $Q’$ be defined as follows using $R_{1},$ $R_{2}$ .

$P=$ { $\Sigma_{a\in A}$ a $|A\subseteq R_{1}$ }
$P’=$ { $w_{i}+\Sigma_{a\in}A$ a $|A\subseteq R_{1}$ }
$Q=\{\Sigma_{b\in B}b|B\subseteq R_{2}\}$

$Q^{J}=\{w_{i}+\Sigma_{b\in B}b|B\subseteq R_{2}\}$
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Using the notation as in Theorem 4.1, $W_{i+2}=W_{\mathrm{t}^{P\cup}}\prime P$) $Q$
and $W_{i+2}^{*}=W_{P(Q\cup Q’)}$ . $W_{P(Q\cup Q)}$

, is

maximized when $P$ is not classified by both $Q$ and $Q’$ at the same place. Thus, $W_{i+2}^{*}$ is bounded by
$W_{PQ}$ and $W_{PQ’}$ as follows.

$W_{i+2}^{*}\leq(W_{PQ}-1)+(W_{PQ’}-1)+1=W_{PQ}+W_{PQ’}-1$ .

As $P^{J}$ ( $Q^{J}$ resp.) is computed by adding $w_{i}$ to each element of $P$ ( $Q$ resp.), $W_{PQ’}=W_{P’Q}$ .

Moreover,
$W_{PQ}\leq W_{()Q}P\cup P’=W_{i+2}$ ,

$W_{P’Q}\leq W’(P\cup P)Q=W_{i+2}$ .

Using the above equations, we have

$W_{i+2}^{*}$ $\leq$ $W_{PQ}+W_{PQ’}-1$ $=$ $W_{PQ}+W_{P’Q}-1$

$\leq$ $2W_{i+2}-1$ .

As the similar argument is possible for $W_{i3}^{*},$
$\ldots,$$W^{*}+j$ and $W_{i}^{*}$ ,

$\{$

$W_{k}^{*}\leq 2W_{k}-1$ $(i+2\leq k\leq j)$

$W_{i}^{*}\leq 2W_{j+1^{-1}}$ .

Thus the upper bound is obtained.

Next, we prove the optimality of the upper bound. We can see that the bound is achieved for the

following function and jump-down$(n/2+1, n)$ operation.

$w_{i}=\{$

$2^{i-1}$ $(ifi\leq n/2)$

$2^{i-n/2-}1$ $(ifi\geq n/2+1)$

$t= \sum_{\mathrm{i}=1}^{n}w_{i}/2=2^{\frac{n}{2}}-1$

In this case, the widths of each level of these OBDD’s are as follows.

$W_{k}^{*}$ $=$ $W_{k}(1\leq k\leq i-1=n/2)$

$W_{i+1}^{*}$ $=$ $W_{i}$

$W_{k}$ $=$ $2^{n-k+1}+1(n/2+3=i+2\leq k\leq n)$

$W_{k}^{*}$ $=$ $2^{n-k+2}+1(n/2+3=i+2\leq k\leq n)$

$W_{n/2+}^{*}1$ $=$ $2W_{n+1}-1$

Thus, we can easily check that

$S^{*}=W_{1}+\cdots+W_{n/2+1}+(2W_{n/2+}3-1)+\cdots+(2W_{n+1^{-1)}}+W_{n+1}$ .

$\square$

Corollary 4.7 The following inequalities hold for the operations on the OBDD’s representing

threshold functions.

$\{$

jump-up: $S/2\leq S^{*}\leq 2S$

jump-down: $S/2\leq S^{*}\leq 2S$

swap: $S/2\leq S^{*}\leq 2S$

exchange: $S/4\leq S^{*}\leq 4S$
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Proof Upper bounds for jump-up, jump-down and swap operations are obtained from the above
theorems. In case of the jump-up operation,

$S^{*}$ $\leq$ $W_{1}+\cdots+W_{j}+2(W_{j}+\cdots+W_{i-1})+W_{i+1}+\cdots+W_{n}+W_{n+1}$ .

Apply $W_{k}\leq 2W_{k-1}$ for $k=j$ to 2 in turn and finally apply $W_{1}=1$ . Then we have

$S^{*}$ $\leq$ $1+2(W_{1}+\cdots+W_{i-1})+W_{i+1}+\cdots+W_{n}+W_{n+1}$ .

The swap operation can be managed in the same way. In case of the jump-down operation,

$S^{*}$ $\leq$ $W_{1}+\cdots+W_{i}+(2W_{i+2^{-1}})+\cdots+(2W_{j+1^{-1}})+W_{j+1}+\cdots+W_{n+1}$ .

Apply $W_{k}\leq 2W_{k+1}-1$ for $j+1\leq k\leq n$ and then apply $W_{n+1}=2$ . Then we have

$S^{*}$ $\leq$ $W_{1}+\cdots+W_{i}+(2W_{i+2^{-1}})+\cdots+(2W_{n+1^{-1)}}+2$.

The lower bound for the jump-up operation is computed from the upper bound of the
jump-down operation because a jump-up operation is the inverse of a jump-down operation. Lower
bounds for the jump-down and swap operations are computed in the same way.

Lower and upper bounds for the exchange operation can be obtained because it is realized by
executing a jump-up and a jump-down operations. $\square$

5 Conclusion

In this paper, we have considered some relations between the size of OBDD’s representing threshold
functions and their variable orderings. We have shown that the size of OBDD’s do not change largely
when the variable ordering is reversed. It can be explained that the variable orderings are very similar
in the sense that the variables adjacent in the original ordering remain adjacent when it is reversed.
We have also proved that the OBDD size is at most doubled by the jump-down operation. It is very
small compared with the case of general Boolean functions. It is because the width of a level cannot
be twice as large as the width of the next level on the OBDD’s representing threshold functions.

Our future work is to clarify the complexity of optimal variable ordering problem for OBDD’s
representing threshold functions. Although it is difficult to compute the optimal variable ordering,
when we consider only threshold functions, it may be computed within polynomial time from the
weights of variables and the threshold value.
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