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1 Introduction
Wavelet methods have been around for about 10 years, and there are actually
very few useful numerical methods which have come from the wavelet field.
This paper introduces a numerical method which was created about 3 years
ago in an attempt to finally produce a method which is useful to a wide range
of applied scientists. The numerical method is named the Wavelet Optimized
Fimite Difference Method (WOFD). First a review of wavelet analysis will be
given followed by the definition of WOFD.

2 Definition of Daubechies-based Wavelets
To define Daubechies-based wavelets, see [2] for the original work, consider
the two functions $\phi(x)$ , the scaling function, and $\psi(x)$ , the wavelet. The
scaling function is the solution of the dilation equation,

$\phi(x)=\sqrt{2}^{L-1}\sum_{k=0}hk\emptyset(2x-k)$ , (1)
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where $\phi(x)$ is normalized $\int_{-\infty}^{\infty}\phi(X)dX=1$ , and the wavelet $\psi(x)$ is defined in
terms of the scaling function,

$\psi(x)=\sqrt{2}\sum_{=k0}^{-1}g_{k}\phi(L2X-k)$ . (2)

One builds an orthonormal basis from $\phi(x)$ and $\psi(x)$ by dilating and
translating to get the following functions:

$\phi_{k}^{j}(x)=2^{-i}2\phi(2-j-kx)$ , (3)

and
$\psi_{k}^{j\mathrm{i}}(x)=2^{-_{2}}\psi(2^{-j}x-k)$ , (4)

where $j,$ $k\in Z.$ $j$ is the dilation parameter and $k$ is the translation pa-
rameter. The coefficients $H=\{h_{k}\}_{k=0^{1}}^{L-}$ and $G=\{g_{k}\}_{k=0^{1}}^{L-}$ are related by
$g_{k}=(-1)^{k}hL-k$ for $k=0,$ $\ldots,$ $L-1$ . All wavelet properties are specified
through the parameters $H$ and $G$ . If one’s data is defined on a continuous
domain such as $f(x)$ where $x\in R$ is a real number then one uses $\phi_{k}^{j}(x)$ and
$\psi_{k}^{j}(x)$ to perform the wavelet analysis. If, on the other hand, one’s data is
defined on a discrete domain such as $f(i)$ where $i\in Z$ is an integer then the
data is analyzed, or filtered, with the coefficients $H$ and $G$ . In either case,
the scalin$\mathrm{g}$ function $\phi(x)$ and its defining coefficients $H$ detect localized low
frequency information, i.e., they are low-pass filters (LPF), and the wavelet
$\psi(x)$ and its defining coefficients $G$ detect localized high frequency informa-
tion, i.e., they are high-pass filters (HPF). Specifically, $H$ and $G$ are chosen
so that dilations and translations of the wavelet, $\dot{\psi}_{k}(x)$ , form an orthonormal
basis of $L^{2}(R)$ and so that $\psi(x)$ has $M$ vanishing moments which determines
the accuracy. In other words, $\psi_{k}^{j}(x)$ will satisfy

$\delta_{k\iota}\delta jm=\int_{-\infty}^{\infty}\psi_{k}^{j}(x)\psi l(mx)d_{X}$, (5)

where $\delta_{kl}$ is the Kronecker delta function, and the accuracy is specified by
requiring that $\psi(x)=\psi_{0}^{0}(X)$ satisfy

$\int_{-\infty}^{\infty}\psi(X)xdmx=0$ , (6)
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for $m=0,$ $\ldots,$
$M-1$ . Under the conditions of the previous two equations, for

any function $f(x)\in L^{2}(R)$ there exists a set $\{d_{jk}\}$ such that

$f(x)= \sum_{\mathrm{z}j\in k}\sum_{Z\in}d\mathrm{j}k\psi_{k}^{\mathrm{j}}(X)$
, (7)

where
$d_{jk}= \int_{-\infty}^{\infty}f(X)\psi_{k}^{j}(x)d_{X}$ . (8)

The two sets of coefficients $H$ and $G$ are known in signal processing lit-
erature as quadrature mirror filters [4]. For Daubechies wavelets the number
of coefficients in $H$ and $G$, or the length of the filters $H$ and $G$ , denoted
by $L$ , is related to the number of vanishing moments $M$ by $2M=L$ . For
example, the famous Haar wavelet is found by defining $H$ as $h_{0}=h_{1}=1$ .
For this filter, $H$ , the solution to the dilation equation (1), $\phi(x)$ , is the box
function: $\phi(x)=1$ for $x\in[0,1]$ and $\phi(x)=0$ otherwise. The Haar function
is very useful as a learning tool, but because of its low order of approxima-
tion accuracy and lack of differentiability it is of limited use as a basis set.
The coefficients $H$ needed to define compactly supported wavelets with a
higher degree of regularity can be found in [2]. As is expected, the regularity
increases with the support of the wav.elet. The usual notation to denote a
Daubechies-based wavelet defined by coefficients $H$ of $\mathrm{l}\mathrm{e}\dot{\mathrm{n}}$ gth $L$ is $D_{L}$ .

It is usual to let the spaces spanned by $\phi_{k}^{j}(x)$ and $\dot{\psi}_{k}(x)$ over the parameter
$k$ , with $j$ fixed, be denoted by $V_{\mathrm{j}}$ and $W_{j}$ respectively,

$.\iota$

$V_{j}=spank\in Z\phi_{k}^{j}(_{X)},$ $(9)$
$W_{j}=spank\in Z\psi_{k}^{j}(_{X)}$ . (10)

The spaces $V_{j}$ and $W_{j}$ are related by,

$...\subset V_{1}\subset V0\subset V-1\subset\cdots$ , (11)

an“$\mathrm{d}$

$V_{j}=V_{\mathrm{j}+1}\oplus Wj+1$ , (12)

where the notation $V_{0}=V_{1}\oplus W_{1}$ indicates that the vectors in $V_{1}$ are orthog-
onal to the vectors in $W_{1}$ and the space $V_{0}$ is simply decomposed into these
two component subspaces.
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The previously stated condition that the wavelets form an orthonormal
basis of $L^{2}(R)$ can now be written as,

$L^{2}(R)= \bigoplus_{j\in^{z}}W_{j}$
. (13)

Two final properties of the spaces $V_{\mathrm{j}}$ are that,

$\bigcap_{j\in Z}V_{j}=\{0\}$
, (14)

and
$\overline{\bigcup_{\mathrm{j}\in Z}Vj}=L^{2}(R)$ . (15)

3 The Wavelet-Optimmized Finite Difference
Method

The localized and multiscale nature of wavelets appeals to $\mathrm{o}\mathrm{n}\mathrm{e}^{\}}\mathrm{s}$ intuition
for analysis of functions which are composed of local features. However, a
complete numerical method using Daubechies-based wavelets has difficulties
with nonlinear terms and boundary conditions. That is, nonlinear terms are
currently being dealt with in the wavelet community by either transforming
back to the physical space for evaluation, or by some expensive approxima-
tion to the wavelet coefficients of nonlinear terms. Likewise, wavelets at a
boundary and boundary conditions imposed on these boundary functions is
an incipient area of research. In fact, it is perhaps not possible to obtain a
sufficient order of accuracy at a boundary in order to maintain the global
accuracy of the scheme [7]. If, however, one utilizes the Daubechies wavelets
in their finite-difference form then one can avoid the complications at bound-
aries and with nonlinear terms by performing all calculations in the physical
space. That is, the goal is to create a numerical method which imitates a
wavelet method while avoiding the complications.

The proposed method is named the Wavelet-Optimized Finite Differ-
ence Method, or WOFD, and it works by allowing the wavelets to place
the degrees-of-freedom at the same location and at the same resolution as
a complete wavelet method. These $\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{S}^{-}\mathrm{o}\mathrm{f}- \mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{d}\mathrm{o}\mathrm{m}$ , however, now take
the form of point values instead of wavelet coefficients, and with these point
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values one can perform all calculations in the physical space by applying
finite-difference operators on the arbitrarily chosen wavelet-based grid. That
is, wavelets can detect oscillations in a function at any location and scale.
Given a function $f(x)$ for $x\in I$ , where $I$ is some interval, one decomposes
$f(x)$ into a set of wavelet coefficients which depend on two parameters, one
for location and one for scale, say $d_{k}^{j}$ , where $k$ is the location parameter and
$j$ is the scale parameter. If a wavelet coefficient is large in magnitude,

$|d_{k}^{j}|>T$, (16)

or large in energy (In practice the two criteria yield roughly the same grid.),

$(d_{k}^{j})^{2}>T$, (17)

where $T$ is a coefficient threshold chosen by the user, then WOFD adds a grid
point, or two, at location $k$ and at a grid density corresponding to the scale $j$ .
That is, WOFD defines a grid which will completely resolve a function across
the entire domain without over resolving it where it is relatively smooth, or
composed only oflarge scale structure. For the specific case of the $D_{4}$ wavelet
outlined in the previous section, the $D_{4}$ wavelet decomposition provides the
optimal grid for $4\mathrm{t}\mathrm{h}$-order finite differencing.

The grid definition should be made by a Daubechies wavelet which cor-
responds in terms of superconvergence accuracy to the accuracy of the finite
difference operator. That is, it was proven in [6] that the differentiation ma-
trix for the Daubechies wavelet $D_{2M}$ , where $M$ is the number of vanishing
moments, displays differentiation accuracy of order $2M$ under the assump-
tions of periodicity and a uniform grid. Recall, that this wavelet subspace
can only represent exactly the first $M$ polynomials as determined by the
number of vanishing moments. This order of accuracy $2M$ should equal the
order of accuracy of the finite difference operator for optimal grid selection.

In other words, suppose a calculation begins with $\mathrm{N}$ evenly-spaced sam-
ples of a function $\tilde{f}$ and that some quadrature method produces $\mathrm{N}$ scaling
function coefficients on the finest scale denoted by $V_{0}$ . If the spacing between
adjacent values in the vector $\tilde{f}$ is $\Delta x$ then this is also the physical-space
resolution of any calculation done in $V_{0}$ . Now, decompose $V_{0}$ once to get
$V_{0}=V_{1}\oplus W_{1}$ . Similarly speaking, the physical space resolution of $V_{1}$ is
$2\triangle x$ and the refinement from the $2\triangle x$ physical-space resolution to the $\triangle x$

physical-space resolution is dictated by the wavelet coefficients in $W_{1}$ , see
[10].
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Perhaps the best way to see the power of WOFD is to examine a couple
of examples of the grid selection mechanism.

4 Examples of Grid Selection
The first example has been used many times because it illustrates the most
salient features of the grid selection mechanism. The function is composed of
a steep gradient region with a Gaussian-shaped pulse. Obviously one needs
many points in the steep gradient region to resolve the physical structure as
well as many points in the region of the Gaussian pulse. The second picture
shows the grid which is generated by the wavelet grid selection mechanism.
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This second example is of a pulse in an isolated region of the domain.
The grid selected for this pulse is very dense in the region of the pulse and
sparse in the remainder of the domain.
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