<table>
<thead>
<tr>
<th>Title</th>
<th>A continuous version of Gale's feasibility theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nozawa, Ryohei</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60221</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
A continuous version of Gale's feasibility theorem

Ryôhei Nozawa

札幌医科大学医学部 野澤亮平

1. Introduction

There are several approaches to formulate flow problems on continuous networks. In this paper, using a formulation due to Iri (1979) and Strang (1983), we establish a continuous version of Gale's feasibility theorem [1].

The theorem is known as the "Supply-Demand Theorem" in a special case. By means of a cut capacity, this gives a necessary and sufficient condition for an existence of feasible flows.

Let us recall our formulation of continuous network and state a continuous version of the Supply-Demand Theorem. As for a discrete version, one can refer to Ford and Fulderson's book (1962). In this discussion, we assume that all functions and sets are sufficiently smooth. Let Ω be a bounded domain of n-dimensional Euclidean space \mathbb{R}^n and $\partial\Omega$ be the boundary. Let A, B be disjoint subsets of $\partial\Omega$ which are regarded as a source and a sink. In our continuous network, every flow is represented by a vector field and every feasible flow σ satisfies the capacity constraint which is written as

$$\sigma(x) \in \Gamma(x) \text{ for all } x \in \Omega,$$

where Γ is a set-valued mapping from Ω to \mathbb{R}^n. The flow value of σ is defined by $\sigma \cdot \nu$ on $\partial\Omega$. We call Ω with this capacity constraint a continuous network.

Furthermore, every cut is identified with a subset of Ω in our network. Let S be a cut and ν^S be the unit outer normal to S. Then the cut capacity $C(S)$ is defined by

$$C(S) = \int_{\Omega \cap \partial S} \beta(\nu^S(x), x) ds(x),$$

where

$$\beta(v, x) = \sup_{w \in \Gamma(x)} v \cdot w$$

for $v \in \mathbb{R}^n$ and ds is the surface element. If the capacity constraint is isotropic, that is, $\Gamma(x) = \{w \in \mathbb{R}^n \mid |w| \leq c(x)\}$ with some nonnegative function $c(x)$, then

$$C(S) = \int_{\Omega \cap \partial S} c(x) ds(x).$$
Let \(a, b \) be real-valued functions on \(A, B \) respectively and let \(\nu \) be the unit outer normal to \(\Omega \). Then the problem of supply-demand in a simple case is stated as follows:

\[
\text{(SD)} \quad \begin{align*}
\sigma(x) &\in \Gamma(x) \text{ for all } x \in \Omega, \\
\text{div } \sigma &= 0 \text{ on } \Omega, \quad -\sigma \cdot \nu = 0 \text{ on } \partial \Omega - (A \cap B), \\
-\sigma \cdot \nu &\leq a \text{ on } A, \quad \sigma \cdot \nu \geq b \text{ on } B.
\end{align*}
\]

The Supply-Demand theorem assures that (SD) has a solution if and only if

\[
\text{(G)} \quad C(S) \geq \int_{B \cap \partial S} bds - \int_{A \cap \partial S} ads \quad \text{for each cut } S.
\]

This can be proved by the aid of a continuous version of max-flow min-cut theorem under some assumptions. However, we can not apply the same method to a variant of (SD), which is called a symmetric type by Ford and Fulkerson.

On the other hand, Neumann [5] and Oettli and Yamasaki [8] investigated a problem of feasibility of flows and proved similar results in their own network formulations. Their method is based on a generalized Hahn-Banach Theorem and is applicable even for a symmetric supply-demand problem. In the next section, we give a concrete formulation of our problem in a more general form than (SD), and give a corresponding condition which is equivalent with an existence of solutions for the problem under suitable assumptions. Finally in §3, we consider (SD) as a special case and examine the assumptions.

2. Problem setting and a main theorem

Let \(\Omega \) be a bounded domain in \(n \)-dimensional Euclidean space \(R^n \) with Lipschitz boundary \(\partial \Omega \). One can consider \(n - 1 \)-dimensional surface measure on \(\partial \Omega \) which is equal to \(n - 1 \)-dimensional Hausdorff measure \(H_{n-1} \) on \(\partial \Omega \). We note that the unit outer normal \(\nu \) to \(\Omega \) is defined and essentially bounded measurable on \(\partial \Omega \) with respect to \(H_{n-1} \). Let \(\Gamma \) be a set-valued mapping from \(\Omega \) to \(R^n \) which satisfies the following two conditions:

\[
\text{(H1)} \quad \Gamma(x) \text{ is a compact convex set containing } 0 \text{ for all } x \in \Omega.
\]

\[
\text{(H2)} \quad \text{Let } \varepsilon > 0 \text{ and } \Omega_0 \text{ be a compact subset of } \Omega.
\]

Then there is \(\delta > 0 \) such that

\[
\Gamma(x) \subset \Gamma(y) + B(0, \varepsilon) \text{ if } x, y \in \Omega_0 \text{ and } |x - y| < \delta.
\]
In what follows, we assume that each feasible flow is represented by an essentially bounded vector field σ on Ω satisfying the following capacity constraints:

$$\sigma(x) \in \Gamma(x) \quad \text{for a.e. } x \in \Omega.$$

Furthermore if $\text{div } \sigma \in L^n(\Omega)$, then $\sigma \cdot \nu$ can be defined as a function in $L^\infty(\partial \Omega)$ in a weak sense by Kohn and Temam [2]. Let $F \in L^n(\Omega)$ and $\lambda, \mu \in L^\infty(\partial \Omega)$ with $\lambda \leq \mu$. Then for the quintuple $(\Omega, \Gamma, F, \mu, \lambda)$, our problem is stated as follows:

$$(P) \quad \text{Find } \sigma \in L^\infty(\Omega; \mathbb{R}^n) \text{ such that }$$

$$\sigma(x) \in \Gamma(x) \quad \text{for a.e. } x \in \Omega,$$

$$\text{div } \sigma = F \quad \text{a.e. on } \Omega \text{ and } \lambda \leq \sigma \cdot \nu \leq \mu \text{ a.e. on } \partial \Omega.$$

Problem (SD) considered in §1 can be written in this form with $F = 0$.

To specify the class of cuts, we consider the space $BV(\Omega)$ of functions of bounded variation on Ω:

$$BV(\Omega) = \{u \in L^1(\Omega) \mid \nabla u \text{ is a Radon measure of bounded variation on } \Omega\},$$

where $\nabla u = (\partial u/\partial x_1, \cdots, \partial u/\partial x_n)$ is understood in the sense of distribution. We denote the characteristic function of a subset S of Ω by χ_S and set

$$Q = \{S \subset \Omega \mid \chi_S \in BV(\Omega)\}.$$

Let $S \in Q$. Then the reduced boundary $\partial^* S$ of S is the set of all $x \in \partial S$ where Federer's normal $\nu = \nu(x)$ to S exists. It is known that $\partial^* S$ is a measurable set with respect to both the measure of total variation of $|\nabla \chi_S|$ and H_{n-1}, $|\nabla \chi_S|(R^n - \partial^* S) = 0$ and $|\nabla \chi_S|(E) = H_{n-1}(E)$ for each $|\nabla \chi_S|$-measurable subset E of $\partial^* S$. Furthermore let $\gamma u \in L^1(\partial \Omega)$ be the trace of $u \in BV(\Omega)$. Then [4; Theorem 6.6.2] implies that $\gamma \chi_S = \chi_{\partial^* S \cap \partial \Omega}$ H_{n-1}-a.e. on $\partial \Omega$. Accordingly, replacing ds by H_{n-1} and ∂S by $\partial^* S$, we can define the cut capacity as follows:

$$C(S) = \int_{\Omega \cap \partial^* S} \beta(\nu^S(x), x) dH_{n-1},$$

where $\beta(\cdot, x)$ is the support functional of $\Gamma(x)$ as defined in §1. Let $\nabla u/|\nabla u|$ be the Radon-Nikodym derivative of ∇u with respect to $|\nabla u|$ and set

$$\psi(u) = \int_{\Omega} \beta(\nabla u/|\nabla u|, x) d|\nabla u|(x)$$
for \(u \in BV(\Omega) \). Then \(C(S) = \psi(\chi_S) \). Since \(\beta \) is continuous and nonnegative by (H1) and (H2), \(C(S) \) is finite. We set
\[
\lambda(S) = \int_{\partial^*S} \lambda dH_{n-1}, \quad \mu(S) = \int_{\partial^*S} \mu dH_{n-1}, \quad F(S) = \int_S F dx.
\]
for convenience sake, and consider the condition
\[
(C) \quad C(S) \geq \lambda(S) - F(S) \quad \text{and} \quad C(S) \geq -\mu(\Omega - S) + F(\Omega - S)
\]
hold for all \(S \in Q \).

Now we can state a continuous version of Gale’s feasibility theorem.

Theorem 2.1. Assume that (H1) and (H2) hold. If \((P)\) has a solution, then condition (C) holds. Conversely if \(\bigcup_{x \in \Omega} \Gamma(x) \) is bounded and condition (C) holds, then \((P)\) has a solution.

To prove this theorem, we need some lemmas. First applying an isoperimetric inequality due to [4] we have

Lemma 2.2. There is \(\sigma_0 \in L^\infty(\Omega; \mathbb{R}^n) \) such that \(\text{div} \sigma = F \) a.e. on \(\Omega \).

Proof: First assume that \(\int_{\Omega} F dx = 0 \). We use a max-flow min-cut theorem of Strang’s type (1983):
\[
\sup \{ t \geq 0 \mid \text{div} \sigma = -tF \text{ a.e. on } \Omega, \; \sigma \cdot \nu = 0 \text{ H}_{n-1}\text{-a.e. on } \partial \Omega \}
\]
for some \(\sigma \in L^\infty(\Omega; \mathbb{R}^n) \) with \(\|\sigma\|_\infty \leq 1 \)
\[
= \inf \{ H_{n-1}(\Omega \cap \partial^* S) / \int_S F dx \mid \int_S F dx > 0, \; S \subset \Omega, \chi_S \in BV(\Omega) \}.
\]

(The proof is in [6].) To prove the existence of \(\sigma_0 \), it is sufficient to show that the supremum is positive. We can prove that the infimum is positive as follows. According to [4; p.303] there is a positive constant \(k \) such that
\[
\min(m_n(S), m_n(\Omega - S)) \leq k H_{n-1}(\Omega \cap \partial^* S)^{(n-1)/n},
\]
where \(m_n \) denotes the Lebesgue measure on \(\mathbb{R}^n \). Since
\[
\int_S F dx \leq (\int_S 1 dx)^{(n-1)/n} \cdot \left(\int_S |F|^n dx \right)^{1/n} \leq \|F\|_n (m_n(S))^{(n-1)/n}
\]
and
\[
\int_S F dx = \int_{\Omega - S} -F dx \leq (\int_{\Omega - S} 1 dx)^{(n-1)/n} \cdot \left(\int_{\Omega - S} |F|^n dx \right)^{1/n}
\]
\[
\leq \|F\|_n (m_n(\Omega - S))^{(n-1)/n},
\]
we can conclude that

$$\int_{S} Fdx \leq k_{1}H_{n-1}(\Omega \cap \partial^{*}S)$$

with $k_{1} = \|F\|_{n}k^{(n-1)/n}$ for all $S \in Q$. It follows that the infimum is not less than $1/k_{1}$.

Finally in case of $\int_{\Omega} Fdx \neq 0$, consider σ_{1} such that $\text{div} \ \sigma_{1}$ equals constantly $\int_{\Omega} Fdx$, σ_{2} such that $\text{div} \ \sigma_{2} = F - \int_{\Omega} Fdx$ and set $\sigma_{0} = \sigma_{1} + \sigma_{2}$. Then $\text{div} \ \sigma_{0} = F$. This completes the proof.

From now on we fix σ_{0} in Lemma 2.2. For $\sigma \in L^{\infty}(\Omega; R^{n})$ such that $\text{div} \ \sigma \in L^{n}(\Omega)$ and $u \in BV(\Omega)$, according to [2] we can define the distribution $(\sigma \nabla u)$ by

$$(\sigma \nabla u)(\varphi) = -\int_{\Omega} u\nabla \varphi \cdot \sigma dx - \int_{\Omega} u\varphi \text{div} \ \sigma dx$$

for $\varphi \in C_{0}^{\infty}(\Omega)$. Since $BV(\Omega) \subset L^{n/(n-1)}(\Omega)$, each integral in the definition is finite. Furthermore it is known that $(\sigma \nabla u)$ is regarded as a bounded measure and that

$$(\sigma \nabla u)(\Omega) + \int_{\Omega} u\text{div} \ \sigma dx = \int_{\partial \Omega} \gamma u \sigma \cdot \nu dH_{n-1}$$

holds. This is Green's formula due to Kohn and Temam [2; Proposition 1.1]. (See also [6; Theorem 2.3].) Using this formula, we can prove

Lemma 2.3. If (P) has a solution, then (C) holds.

Proof: Let σ be a solution of (P). Then by Green's formula stated above,

$$C(S) \geq (\sigma \nabla \chi_{S}) (\Omega) = \int_{\partial \Omega \cap \partial^{*}S} \sigma \cdot \nu dH_{n-1} - \int_{S} \text{div} \ \sigma dx$$

$$\geq \lambda(S) - F(S).$$

Another inequality in (C) can be similarly proved.

To prove the converse, we follow the idea in [5] and [8]. Let us consider the Sobolev space

$$W^{1,1}(\Omega) = \{ u \in L^{1}(\Omega) \mid \nabla u \in L^{1}(\Omega; R^{n}) \},$$

which is a linear subspace of $BV(\Omega)$. We set

$$U = L^{1}(\Omega; R^{n}) \times L^{1}(\partial \Omega) \text{ and } V = \{ (\nabla u, \gamma u) \mid u \in W^{1,1}(\Omega) \}.$$
Since $\gamma u \in L^1(\partial \Omega)$ for $u \in W^{1,1}(\Omega)$, V is a linear subspace of U. Let $u^+ = \max(u, 0)$ and $u^- = -\min(u, 0)$. Note that $u^+, u^- \in W^{1,1}(\Omega)$. We define a functional Φ on V by

$$\Phi(\nabla u, \gamma u) = \int_{\Omega} \sigma_0 \cdot \nabla u \, dx - \int_{\partial \Omega} \sigma_0 \cdot \nu \gamma u \, dH_{n-1} + \int_{\partial \Omega} \lambda \gamma u^+ \, dH_{n-1} - \int_{\partial \Omega} \mu \gamma u^- \, dH_{n-1}$$

and set $K = \{\sigma \in L^\infty(\Omega; \mathbb{R}^n) | \sigma(x) \in \Gamma(x) \text{ for a.e. } x \in \Omega\}$.

For $v \in L^1(\Omega; \mathbb{R}^n)$, we define a functional ρ on U by

$$\rho(v, \alpha) = \int_{\Omega} \beta(v(x), x) \, dx = \sup_{\phi \in K} \int_{\Omega} v \cdot \phi \, dx$$

for $(v, \alpha) \in U$. The last equality follows from a measurable selection theorem. (Cf. Castaing and Valadier (1977).) Since $\rho(v, \alpha)$ is independent of α, it is sometimes denoted by $\rho(v)$. We note that $\psi(u) = \rho(\nabla u)$ for all $u \in W^{1,1}(\Omega)$. The inequality $\lambda \leq \mu$ implies the next lemma.

Lemma 2.4. Φ is superlinear on V, that is, concave and positively homogeneous, and ρ is sublinear on U, that is, $-\rho$ is superlinear. Furthermore ρ is continuous at the origin of U if $\cup_{x \in \Omega} \Gamma(x)$ is bounded.

Condition (C) can be replaced by an inequality with Φ and ρ.

Lemma 2.5. If (C) holds, then $\Phi \leq \rho$ on V.

Proof: We use equalities of coarea formula type which are stated in [6]: Let $u \in W^{1,1}(\Omega)$. Set $N_t = \{x \in \Omega | u(x) \geq t\}$ and $M_t = \Omega - N_t$ for any real number t. Then $N_t, M_t \in Q$ for a.e. t and

$$\psi(u) = \int_{-\infty}^{\infty} \psi(\chi_{N_t}) \, dt.$$

Furthermore by [6; Lemma 4.6]

$$\int_{\Omega} F u \, dx = \int_{0}^{\infty} \left(\int_{\Omega} F \chi_{N_t} \, dx - \int_{\Omega} F \chi_{M_{-t}} \, dx \right) dt,$$

$$\int_{\partial \Omega} \lambda \gamma u^+ \, dH_{n-1} = \int_{0}^{\infty} \int_{\partial \Omega} \lambda \gamma \chi_{N_t} \, dH_{n-1} \, dt,$$

$$\int_{\partial \Omega} \mu \gamma u^- \, dH_{n-1} = \int_{0}^{\infty} \int_{\partial \Omega} \mu \gamma \chi_{M_{-t}} \, dH_{n-1} \, dt.$$
It follows from these equalities and (C) that

\[
\rho(\nabla u) = \psi(u) = \int_{-\infty}^{\infty} \psi(\chi_{N_{t}})dt = \int_{0}^{\infty} \psi(\chi_{N_{t}})dt + \int_{0}^{\infty} \psi(\chi_{-M_{-t}})dt
\]

\[
= \int_{0}^{\infty} C(N_{t})dt + \int_{0}^{\infty} C(\Omega - M_{-t})dt
\]

\[
= \int_{0}^{\infty} (\lambda(N_{t}) - F(N_{t}))dt + \int_{0}^{\infty} (-\mu(M_{-t}) + F(M_{-t}))dt
\]

\[
\geq \int_{0}^{\infty} (\int_{\partial\Omega} \lambda\gamma\chi_{N_{t}}dH_{n-1} - \int_{\Omega} F\chi_{N_{t}}dx)dt
\]

\[
+ \int_{0}^{\infty} (-\int_{\partial\Omega} \mu\gamma\chi_{M_{-t}}dH_{n-1} + \int_{\Omega} F\chi_{M_{-t}}dx)dt
\]

\[
= \int_{\partial\Omega} \lambda\gamma u^{+}dH_{n-1} - \int_{\partial\Omega} \mu\gamma u^{-}dH_{n-1} - \int_{\Omega} u\text{div}{\sigma_{0}}dx
\]

\[
= \int_{\partial\Omega} \lambda\gamma u^{+}dH_{n-1} - \int_{\partial\Omega} \mu\gamma u^{-}dH_{n-1}
\]

\[
- \int_{\partial\Omega} \sigma_{0} \cdot \nu\gamma uH_{n-1} + \int_{\Omega} \sigma_{0} \cdot \nabla udX
\]

\[
\geq \Phi(\nabla u, \gamma u).
\]

Here we have used Green's formula in the last equality. This completes the proof.

By Lemma 2.5 and a version of Hahn-Banach theorem ([3; Corollary 2.2 in p.114]), there is a linear functional \(\xi\) on \(U\) satisfying \(\Phi \leq \xi\) on \(V\) and \(\xi \leq \rho\) on \(U\). The next lemma is directly proved.

Lemma 2.6. If \(\cup_{x \in \Omega} \Gamma(x)\) is bounded, then \(\xi\) is continuous on \(U\) with respect to the canonical norm topology.

By Lemma 2.6, there is \(\sigma \in L^\infty(\Omega; R^n)\) and \(\eta \in L^\infty(\partial\Omega)\) such that

\[
\xi(v, \alpha) = \int_{\Omega} \sigma \cdot vdx + \int_{\partial\Omega} \eta\alpha dH_{n-1}
\]

for all \((v, \alpha) \in U\). However, from the inequality \(\xi(v, \alpha) \leq \rho(v)\) for all \(\alpha \in L^\infty(\partial\Omega)\), \(\eta\) must be 0.
LEMMA 2.7. Assume that $\cup_{x \in \Omega} \Gamma(x)$ is bounded. Then the vector field σ obtained above is a solution to (P).

PROOF: We set $\Omega_0 = \{x \in \Omega| 0 \notin \Gamma(x) - \sigma(x)\}$. Then Ω_0 is a measurable set. Assume that the measure of Ω_0 is positive. Since $K = \{\phi \in L^{\infty}(\Omega; R^n)| \phi(x) \in \Gamma(x) - \sigma(x)\}$ is a weakly* closed convex set and does not contain 0, there is $\varphi \in L^1(\Omega; R^n)$ such that $\sup_{\phi \in K} \int_{\Omega} \varphi \cdot \phi dx < 0$. Therefore

$$\rho(\varphi) = \sup_{\phi \in K} \int_{\Omega} \varphi \cdot (\phi + \sigma) dx < \int_{\Omega} \varphi \cdot \sigma dx = \xi(\varphi, 0).$$

This is a contradiction since $\xi \leq \rho$ on U. Thus $\sigma(x) \in \Gamma(x)$ for almost all $x \in \Omega$.

Next we prove $\text{div} \sigma = F$. If $u \in C_0^\infty(\Omega)$, then $\gamma u = 0$ so that

$$\Phi(\nabla u, \gamma u) = \int_{\Omega} \sigma_0 \cdot \nabla udX \leq \xi(\nabla u, 0) = \int_{\Omega} \sigma \cdot \nabla u dx.$$

It follows that

$$\int_{\Omega} \sigma_0 \cdot \nabla u dx = \int_{\Omega} \sigma \cdot \nabla u dx$$

for all $u \in C_0^\infty(\Omega)$. This implies that $\text{div} \sigma = \text{div} \sigma_0 = F$ in a distribution sense.

Finally we prove that $\lambda \leq \sigma \cdot \nu \leq \mu H_{n-1}$-a.e. on $\partial \Omega$. Since $\text{div} \sigma = F \in L^n(\Omega)$, $\sigma \cdot \nu$ is defined as a function in $L^{\infty}(\partial \Omega)$ and the inequality $\Phi(\nabla u, \gamma u) \leq \int_{\Omega} \sigma \cdot \nabla u dx$ implies that

$$\int_{\partial \Omega} \lambda \gamma u^+ - \mu \gamma u^- dH_{n-1} \leq \int_{\partial \Omega} \gamma u \sigma \cdot \nu dH_{n-1}.$$

For any $\alpha \in L^1(\partial \Omega)$, there is $u \in W^{1,1}(\Omega)$ such that $\alpha = \gamma u$ by Gagliardo (1957). Thus for any nonnegative function $\alpha \in L^1(\partial \Omega)$, we have

$$\int_{\partial \Omega} \lambda \alpha dx \leq \int_{\partial \Omega} \sigma \cdot \nu \alpha dH_{n-1},$$

$$- \int_{\partial \Omega} \mu \alpha dx \leq - \int_{\partial \Omega} \sigma \cdot \nu \alpha dH_{n-1}.$$

Accordingly, $\lambda \leq \sigma \cdot \nu \leq \mu H_{n-1}$-a.e. on $\partial \Omega$. This completes the proof.

PROOF OF THEOREM 2.1: The first statement follows from Lemma 2.3 and the second statement follows from Lemma 2.7.
3. Supply - Demand theorem

Let A, B be disjoint Borel subsets of $\partial \Omega$ and a, b be Borel measurable functions on A, B respectively. Then (SD) in §1 should be written in the following concrete form:

\[(SD) \quad \text{Find } \sigma \in L(\Omega; \mathbb{R}^n) \]
\[\text{such that } \sigma(x) \in \Gamma(x) \text{ for a.e. } x \in \Omega, \]
\[\text{div } \sigma = 0 \text{ a.e. on } \Omega, \]
\[\sigma \cdot \nu = 0 \text{ } H_{n-1}\text{-a.e. on } \partial \Omega - (A \cap B), \]
\[- \sigma \cdot \nu \leq a \text{ } H_{n-1}\text{-a.e. on } A, \]
\[\sigma \cdot \nu \geq b \text{ } H_{n-1}\text{-a.e. on } B.\]

By setting $\lambda = -a$ on A, $\lambda = b$ on B, $\lambda = 0$ elsewhere on $\partial \Omega$ and $\mu = \max(\lambda, 0)$, Theorem 2.1 implies

Theorem 3.1. Assume that (H1), (H2) hold and that $\bigcup_{x \in \Omega} \Gamma(x)$ is bounded. Then (SD) has a solution if and only if

\[(G) \quad C(S) \geq \int_{B \cap \partial^* S} b dH_{n-1} - \int_{A \cap \partial^* S} a dH_{n-1} \text{ for all } S \in Q.\]

Finally we refer to a relation between (SD) and a max-flow problem of Strang's type (MFS) which has been used in the proof of Lemma 2.2 with the boundary condition $\sigma \cdot \nu = 0$. Now let f be an arbitrary function in $L^\infty(\partial \Omega)$ which satisfies the conservation law $\int_{\partial \Omega} f dH_{n-1} = 0$. Then for (Ω, Γ, f), (MFS) with $F = 0$ is stated as follows:

\[(MFS) \quad \text{Maximize } \lambda \]
\[\text{subject to } (\lambda, \sigma) \in R \times L^\infty(\Omega; \mathbb{R}^n), \]
\[\sigma(x) \in \Gamma(x) \text{ a.e. } x \in \Omega, \]
\[\text{div } \sigma = 0 \text{ a.e. on } \Omega, \sigma \cdot \nu = \lambda f \text{ a.e. on } \partial \Omega,\]

and the corresponding min-cut problem (MCS) is

\[(MCS) \quad \text{Minimize } C(S)/L(S) \]
\[\text{subject to } S \subset \Omega, \chi_S \in BV(\Omega), L(S) > 0,\]

where $L(S) = \int_{\partial \Omega \cap \partial^* S} f dH_{n-1}$. Then we have
PROPOSITION 3.2. Assume that (H1) and (H2) hold.

(1) Assume that (G) implies the existence of solutions to (SD) for any disjoint Borel subsets A, B of $\partial \Omega$ and $a \in L^\infty(A), b \in L^\infty(B)$. Then $MFS = MCS$ and (MFS) has an optimal solution for any $f \in L^\infty(\partial \Omega)$ satisfying the conservation law.

(2) Conversely if $MFS = MCS$ and (MFS) has an optimal solution for any $f \in L^\infty(\partial \Omega)$ satisfying the conservation law, then (G) implies the existence of solutions to (SD) for any disjoint Borel subsets A, B of $\partial \Omega$ and $a \in L^\infty(A), b \in L^\infty(B)$ such that $\int_A adH_{n-1} = \int_B bdH_{n-1}$.

It is known that there is an example with $MFS < MCS$ if Γ is unbounded. (See [7].) Thus Proposition 3.2 (1) shows that there is an example of (SD) such that $\bigcup_{x \in \Omega} \Gamma(x)$ is bounded, condition (G) is satisfied and (SD) has no solution.

Acknowledgement

The author is grateful to Professor Yamasaki for his valuable advise, which is essential in proving Theorem 2.1.

References