<table>
<thead>
<tr>
<th>Title</th>
<th>Real analytic wave interpolation function (Spaces of Analytic and Harmonic Functions and Operator Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Uchiyama, Mitsuru</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1996, 946: 174-178</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60234</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Real analytic wave interpolation function

福岡教育大学 内山 充 (Mitsuru Uchiyama)

Department of Mathematics, Fukuoka University of Education
Munakata, Fukuoka, 811-41 Japan, e-mail uchiyama@fukuoka-edu.ac.jp

The figure above is a model for the surface of the earth with a fault. $z = F'(t, x)$ has a fault along the line $x = 0$ so that $h_0(x) := F(-\frac{1}{2}\pi, x)$ is discontinuous and $h_1(x) := F'(\pi/2, x)$ is continuous. For each x, $F(t, x)$ is a smooth wave function for t. We may say that $F'(t, x)$ interpolates $h_0(x)$ and $h_1(x)$.

We show that for given finite functions $h_0(x), \ldots, h_n(x)$ defined on \mathbb{R}, there is a surface $z = F'(t, x)$ in \mathbb{R}^3 which is real analytic for t and takes the curve $z = h_i(x)$ at an appropriate t_i ($0 \leq i \leq n$); moreover if every $h_i(x)$ is real analytic then $F(t, x)$ is real analytic for x too.
Precisely we show

THEOREM. For $n \geq 1$ there is a $(n + 2)$—real variable function $f_n(t, x_0, x_1, \ldots, x_n)$ which satisfies the following:

i. f_n is real analytic for each variable.

ii. $\text{sign } \frac{\partial f_n}{\partial t} = \text{sign } \sin 2t$.

iii. $f_n(-\frac{\pi}{2}, x) = x_0, f_n((2^{i-1} - \frac{1}{2})\pi, x) = x_i$ ($1 \leq i \leq n$), where $x = (x_0, x_1, \ldots, x_n)$.

iv. f_n is a periodic function for t with period $2^n\pi$.

If we can construct this function f_n, then the surface $z = f_n(t, h_0(x), \ldots, h_n(x))$ in \mathbb{R}^3 takes $z = h_0(x)$ at $t = -\frac{\pi}{2}$, and $z = h_i(x)$ at $t = (2^{i-1} - \frac{1}{2})\pi$.

From now on we construct f_n with three steps.

STEP 1. We consider the following non-linear differential equation

$$ t^2 f''(t) = f(t)^2, \quad f(-1) = a, \quad f(1) = b. \quad (1) $$

From this we can easily get

$$ f(t) = \frac{1}{c} t - \frac{1}{c^2} \log |1 + ct| + c_1, $$

$$ a - b = -\frac{2}{c} + \frac{1}{c^2} \log \frac{1+c}{1-c}, $$

$$ c_1 = a + \frac{1}{c} + \frac{1}{c^2} \log (1 - c). $$

Set

$$ \phi(\zeta) := \begin{cases} \frac{2}{\zeta} - \frac{1}{\zeta^2} \log \frac{1+\zeta}{1-\zeta}, & (-1 < \zeta < 1, \zeta \neq 0) \\ 0 & (\zeta = 0) \end{cases} $$

Since we can reform it as

$$ \phi(\zeta) = -2 \left(\frac{\zeta}{3} + \frac{\zeta^3}{5} + \frac{\zeta^5}{7} + \ldots \right), $$

$\phi(\zeta)$ is real analytic on $-1 < \zeta < 1$ with the range \mathbb{R}. Since $\phi'(\zeta) < 0$, ϕ^{-1} is a real analytic function defined on \mathbb{R} too.
We determine two variable function \(h(t, s) \) by

\[
h(t, s) := \begin{cases}
-\frac{1+t}{\phi^{-1}(s)} - \frac{1}{\phi^{-1}(s)^2} \log \frac{1-t\phi^{-1}(s)}{1+\phi^{-1}(s)} & (s \neq 0) \\
\frac{1}{2}t^2 - \frac{1}{2} & (s = 0)
\end{cases}
\]

\[
= \sum_{n=0}^{\infty} \frac{t^{n+2} + (-1)^{n+1}}{n+2} (\phi^{-1}(s))^n,
\]

whose domain is \(\{(t, s) : |t\phi^{-1}(s)| < 1\} \).

The domain is an open set and includes the closed set \([-1, 1] \times \mathbb{R}\); moreover for any number \(M > 0 \), there is \(r > 0 \) such that \([-1 - r, 1 + r] \times [-M, M]\) is included in the domain. We note that \(h(t, s) \) is real analytic for each variable. Setting \(f(t) = h(t, a-b) + a \), since \(h(-1, s) = 0 \) and \(h(1, s) = -\phi(\phi^{-1}(s)) = -s \), we have \(f(-1) = a, \ f(1) = b \).

Since

\[
\frac{df}{dt} = \frac{t}{1-t\phi^{-1}(a-b)}
\]

we get \(t^2f''(t) = (t')^2 \); therefore \(f(t) \) is a solution of (1).

The above \(f(t) \) depends on the initial values \(a \) and \(b \), so that we denote it by \(f(t, a, b) \), that is \(f(t, a, b) = h(t, a-b) + a \).

We remark that if we consider both of \(a \) and \(b \) as variables then \(f \) is real analytic for every variable.

STEP 2. We consider about the Fourier Series

\[
\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\sin(2n+1)t}{2n+1}
\]

of \(x/|x| \) \((-\pi \leq x \leq \pi)\). The partial sum

\[
S_{2n+1}(t) = \frac{4}{\pi} \sum_{k=0}^{n} \frac{\sin(2k+1)t}{2k+1}
\]

is a periodic function with period \(2\pi \), and takes the maximum value \(M \) at \(t = \frac{1}{2} \pi \) and \(t = \frac{2n+1}{2(n+1)} \pi \) (Gibbs phenomenon).
Let us set $s_{2n+1}(t) = S_{2n+1}(\frac{1}{n+1}t)/M$. Then $s_{2n+1}(t)$ is an odd function, and a periodic function with period $2(n+1)\pi$. It is clear that

$$\text{sign} s_{2n+1}(t) = \text{sign} \sin \left(\frac{t}{n+1} \right).$$

Since

$$S'_{2n+1}(t) = \frac{4}{\pi} \sum_{k=0}^{n} \cos(2k+1)t = \frac{2}{\pi} \frac{\sin(2n+2)t}{\sin t},$$

we obtain

$$\text{sign} s'_{2n+1}(t) = \text{sign} (\sin 2t/\sin \frac{t}{n+1}).$$

For f gotten at the end of Step 1, since $-1 \leq s_{2n+1}(t) \leq 1$ for $-\infty < t < \infty$, $f(s_{2n+1}(t), a, b)$ is well-defined and periodic with period $2(n+1)\pi$; moreover it takes a at $t = -\frac{\pi}{2}, -(n + \frac{1}{2})\pi$, and b at $t = \frac{\pi}{2}, (n + \frac{1}{2})\pi$. From (2) and the above it follows that

$$\text{sign} \frac{\partial}{\partial t} f(s_{2n+1}(t), a, b) = \text{sign} \sin 2t$$

(3)

STEP 3. Now we construct f_n in Theorem by the mathematical induction.

First, set $f_1(t, x_0, x_1) := f(\sin t, x_0, x_1)$. Since $s_1(t) = \sin t$, by (3) we get the condition ii. It is easy to check that f_1 satisfies the rest conditions.

Next, suppose that there is a $(n+1)$-variable function f_{n-1} which satisfies the conditions of Theorem. We denote an arbitrary point in \mathbb{R}^{n+2} by $(t, x_0, x_1, \ldots, x_n)$ and set $x = (x_0, x_1, \ldots, x_n)$.

For $1 \leq i \leq n-1$, we set

$$g_i(x) = x_i - f(s_{2^{i-1}}((2i-1-\frac{1}{2})\pi), x_0, x_n).$$

(4)

Then from the assumption for f_{n-1}, we have

$$f_{n-1}((2^{i-1}-\frac{1}{2})\pi, 0, g_1(x), \ldots, g_{n-1}(x)) = g_i(x) \quad 1 \leq i \leq n-1$$

$$f_{n-1}((2^{n-1}-\frac{1}{2})\pi, 0, g_1(x), \ldots, g_{n-1}(x)) = f_{n-1}(-\frac{1}{2}\pi, 0, g_1(x), \ldots, g_n(x)) = 0$$

Now we determine f_n by

$$f_n(t, x) = f(s_{2^{n-1}}(t), x_0, x_n) + f_{n-1}(t, 0, g_1(x), \ldots, g_{n-1}(x)).$$

(5)

We have $f_n(-\frac{\pi}{2}, x) = x_0 + 0 = x_0$, and $f_n(((2^{n-1}-\frac{1}{2})\pi), x) = x_n + 0 = x_n$. Further by (4) we get $f_n((2^{i-1}-\frac{1}{2})\pi, x) = f(s_{2^{i-1}}((2^{i-1}-\frac{1}{2})\pi), x_0, x_n) + g_i(x) = x_i$ for $1 \leq i \leq n-1$.

Thus we have shown the condition iii. Since the period of $f(s_{2n-1}(t), x_0, x_n)$ is $2^n\pi$ and that of f_{n-1} is $2^{n-1}\pi$, the period of $f_n(t, x)$ is $2^n\pi$. Therefore we get the condition iv.

By (3) and the assumption for f_{n-1}, it is easy to show the condition ii. From (4) it follows that $g_i(x)$ is real analytic for each x_i; hence by (5) we get the condition i. Thus the proof is complete.

Problem. In the condition iii of Theorem can we interpolate x_i at regular intervals?