TOEPLITZ 作用素 及び HANKEL 作用素 の HYPONORMALITY について

東北大学 理学研究科 吉野 崇

以下の結果は、今年の秋の学会で既に報告したものであるが、ここでは、その証明も含めて詳しく報告する.

A bounded measurable function $\varphi \in L^{\infty}$ on the circle induces the multiplication operator on L^2 called the Laurent operator L_{φ} given by

$$L_{\varphi}f = \varphi f \text{ for } f \in L^2.$$

And the Laurent operator induces in a natural way twin operators on H^2 called Toeplitz operator T_{φ} given by

$$T_{\varphi}f = PL_{\varphi}f \text{ for } f \in H^2,$$

where P is the orthogonal projection from L^2 onto H^2 and Hankel operator H_{φ} given by

$$H_{\varphi}f = J(I - P)L_{\varphi}f$$
 for $f \in H^2$,

where J is the unitary operator on L^2 defined by

$$J(z^{-n}) = z^{n-1}, \ n = 0, \pm 1, \pm 2, \cdots$$

Lemma 1. For $f \in L^2$, let $f^*(z) = \overline{f(\overline{z})}$. Then $||f^*||_2 = ||f||_2$ and $f^* \in L^2$. Particularly, if $f \in H^2$, then $f^* \in H^2$ also.

Lemma 2. For $\varphi \in L^{\infty}$, $\|\varphi^*\|_{\infty} = \|\varphi\|_{\infty}$ and $\varphi^* \in L^{\infty}$. Particularly, if φ is inner, then φ^* is also inner.

Lemma 3. For
$$\varphi \in H^{\infty}$$
, $J(I-P)L_{\varphi^*} = T_{\varphi^*}J(I-P)$.

Concerning these twin operators, the following results are well known.

Proposition 1. ([1]) $A \in \mathcal{B}(H^2)$ is a Toeplitz operator if and only if $T_z^*AT_z = A$. And, in particular, $A \in \mathcal{B}(H^2)$ is analytic Toeplitz operator (i.e., $A = T_{\varphi}$ for some $\varphi \in H^{\infty}$) if and only if $T_z A = AT_z$.

Proposition 2. ([4]) Let q be a non-constant inner function, and let Q be the orthogonal projection from L^2 onto $K = H^2 \ominus T_q H^2$. If $A \in \mathcal{B}(K)$ commutes with QL_zQ , then there is a function ψ in H^{∞} such that $||\psi||_{\infty} = ||A||$ and $A = QL_{\psi}Q$.

Remark 1. In Proposition 2, we may assume that q is a zero function or an inner function. Because, in the case where q = 0, Proposition 2 reduces to Proposition 1 and, in the case where q is a constant inner function, we may take $\psi = 0$ because A = O.

Proposition 3. H_{φ} has the following properties;

- (1) $T_z^* H_{\varphi} = H_{\varphi} T_z$ (Hence $\mathcal{N}_{H_{\varphi}} = \{x \in H^2 : H_{\varphi} x = o\}$ is invariant under T_z and $\mathcal{N}_{H_{\varphi}} = \{o\}$ or $\mathcal{N}_{H_{\varphi}} = T_q H^2$, where q is inner)
- $(2) H_{\varphi}^* = H_{\varphi^*}$
- (3) $H_{\alpha\varphi+\beta\psi} = \alpha H_{\varphi} + \beta H_{\psi}, \quad \alpha, \beta \in \mathbb{C}$
- (4) $H_{\varphi} = O$ if and only if $(I P)\varphi = o$ (i.e., $\varphi \in H^{\infty}$)
- (5) $||H_{\varphi}|| = \inf\{||\varphi + \psi||_{\infty} ; \psi \in H^{\infty}\}$

Now we state here the relations between these twin operators.

Proposition 4.
$$H_{\psi}^* H_{\varphi} = T_{\overline{\psi}\varphi} - T_{\overline{\psi}} T_{\varphi}$$
 and
$$H_{\overline{\varphi}}^* H_{\overline{\varphi}} - H_{\varphi}^* H_{\varphi} = T_{\varphi}^* T_{\varphi} - T_{\varphi} T_{\varphi}^*.$$

Proposition 5. For any $\psi \in H^{\infty}$, $H_{\varphi}T_{\psi} = H_{\varphi\psi}$ and $T_{\psi}^*H_{\varphi} = H_{\varphi}T_{\psi^*}$.

Concerning the operator inequality of Hankel operators, we have the following.

Theorem 1. The following assertions are equivalent.

- (1) $H_{\varphi_1}H_{\varphi_1}^* \leq \lambda^2 H_{\varphi_2}H_{\varphi_2}^*$ for some $\lambda \geq 0$.
- (2) There exists a function $h \in H^{\infty}$ such that $||h||_{\infty} \leq \lambda$ for some $\lambda \geq 0$ and that $H_{\varphi_1} = H_{\varphi_2}T_h$.

To prove this theorem, we need the following.

Lemma 4. ([3]) For $A, B \in \mathcal{B}(\mathcal{H})$, the following assertions are equivalent.

- (1) $AA^* \le \lambda^2 BB^*$ for some $\lambda \ge 0$.
- (2) There exists a $C \in \mathcal{B}(\mathcal{H})$ uniquely such that A = BC and that

(a)
$$||C||^2 = \inf\{\mu : AA^* \le \mu BB^*\}$$

(b)
$$\mathcal{N}_A = \mathcal{N}_C$$
 and (c) $C\mathcal{H} \subseteq [B^*\mathcal{H}]^{\sim}$.

Proof of Theorem 1. If $H_{\varphi_1}H_{\varphi_1}^* \leq \lambda^2 H_{\varphi_2}H_{\varphi_2}^*$ for some $\lambda \geq 0$, then, by Lemma 4, there exists a $A \in \mathcal{B}(H^2)$ uniquely such that $H_{\varphi_1} = H_{\varphi_2}A$ and that

(a)
$$||A||^2 = \inf\{\mu : H_{\varphi_1} H_{\varphi_1}^* \le \mu H_{\varphi_2} H_{\varphi_2}^* \} \le \lambda^2$$

(b)
$$\mathcal{N}_{H_{\varphi_1}} = \mathcal{N}_A$$
 and (c) $AH^2 \subseteq [H_{\varphi_2}^* H^2]^{\sim L^2}$.

And then, by Proposition 3 (1), $\mathcal{N}_{H_{\varphi_2}} = T_q H^2$, where q is a zero function or an inner function and, by Proposition 5, we have, for any $\psi \in H^{\infty}$,

$$A^* T_{\psi}^* H_{\varphi_2}^* = A^* H_{\varphi_2}^* T_{\psi^*} = H_{\varphi_1}^* T_{\psi^*}$$
$$= T_{\psi}^* H_{\varphi_1}^* = T_{\psi}^* A^* H_{\varphi_2}^*$$

and hence

$$(A^*T_{\psi}^* - T_{\psi}^*A^*)[H_{\varphi_2}^* H^2]^{\sim L^2} = \{o\}.$$
 (i)

Since

$$\langle (T_q A - A T_q) H^2, H_{\varphi_2}^* H^2 \rangle = \langle H^2, (T_q A - A T_q)^* H_{\varphi_2}^* H^2 \rangle = 0$$
 by (i),

 $(T_qA - AT_q)H^2 \subseteq \mathcal{N}_{H_{\varphi_2}} = T_qH^2$ and $\mathcal{N}_{H_{\varphi_2}}$ is invariant under A and hence $[H_{\varphi_2}^*H^2]^{\sim L^2}$ is invariant under A^* . Since $[H_{\varphi_2}^*H^2]^{\sim L^2}$ is invariant under T_z^* by Proposition 3 (2) and (1) and since

$$(A^*T_z^* - T_z^*A^*)[H_{\varphi_2}^*H^2]^{\sim L^2} = \{o\}$$
 by (i),

 $A^*|[H_{\varphi_2}^*H^2]^{\sim L^2}$ commutes with $T_z^*|[H_{\varphi_2}^*H^2]^{\sim L^2}$ and hence $(A^*|[H_{\varphi_2}^*H^2]^{\sim L^2})^*$ commutes with $QL_zQ=(T_z^*|[H_{\varphi_2}^*H^2]^{\sim L^2})^*$, where Q is the orthogonal projection from L^2 onto $[H_{\varphi_2}^*H^2]^{\sim L^2}$. And, by Proposition 2 and Remark 1, there is a function h in H^{∞} such that

$$||h||_{\infty} = ||(A^*|[H_{\varphi_2}^*H^2]^{\sim L^2})^*|| = ||A^*|[H_{\varphi_2}^*H^2]^{\sim L^2}|| \le ||A^*|| = ||A|| \le \lambda$$

and $(A^*|[H_{\varphi_2}^*H^2]^{\sim L^2})^* = QL_hQ$. And then, for any $f \in H^2$, we have

$$H_{\varphi_1}^* f = A^* H_{\varphi_2}^* f = Q L_h^* H_{\varphi_2}^* f = Q T_h^* H_{\varphi_2}^* f$$

= $H_{\varphi_2}^* T_{h^*} f = T_h^* H_{\varphi_2}^* f$ by Proposition 5

and $H_{\varphi_1}^* = T_h^* H_{\varphi_2}^*$ and hence $H_{\varphi_1} = H_{\varphi_2} T_h$.

As a special case of Theorem 1, we have the following.

Theorem 2. H_{φ} is hyponormal (i.e., $H_{\varphi}H_{\varphi}^* \leq H_{\varphi}^*H_{\varphi}$) if and only if $H_{\varphi} = H_{\varphi}^*T_h$ for some $h \in H^{\infty}$ such that $||h||_{\infty} \leq 1$.

Proof. Since $H_{\varphi}^*H_{\varphi} = H_{\varphi^*}H_{\varphi^*}^*$ by Proposition 3 (2), the hyponormality of H_{φ} is equivalent that there exists a function $h \in H^{\infty}$ such that $||h||_{\infty} \leq 1$ and that $H_{\varphi} = H_{\varphi^*}T_h = H_{\varphi^*}T_h$ by Theorem 1 and by Proposition 3 (2).

Corollary 1. Every hyponormal Hankel operator is normal.

Proof. If H_{φ} is hyponormal, then $H_{\varphi} = H_{\varphi}^* T_h$ for some $h \in H^{\infty}$ such that $||h||_{\infty} \leq 1$ by Theorem 2 and, by Propositions 3 (2) and 5,

$$H_{\varphi^*} = H_{\varphi}^* = T_h^* H_{\varphi} = H_{\varphi} T_{h^*} = H_{\varphi^*}^* T_{h^*}.$$

Since $h^* \in H^{\infty}$ and $||h^*||_{\infty} = ||h||_{\infty}$ by Lemmas 1 and 2, $H_{\varphi}^* = H_{\varphi^*}$ is also hyponormal by Theorem 2. Therefore H_{φ} is normal.

By Proposition 4, T_{φ} is hyponormal if and only if $H_{\varphi}^* H_{\varphi} \leq H_{\overline{\varphi}}^* H_{\overline{\varphi}}$ and, by Proposition 3 (2), $H_{\varphi^*} H_{\varphi^*}^* \leq H_{\overline{\varphi}^*} H_{\overline{\varphi}^*}^*$ and hence, by Theorem 1,

$$H_{\varphi^*} = H_{\overline{\varphi}^*} T_h$$

for some function $h \in H^{\infty}$ such that $||h||_{\infty} \leq 1$ and, by using Proposition 3 (2) again, we have the following result.

Theorem 3. T_{φ} is hyponormal if and only if $H_{\varphi} = T_h^* H_{\overline{\varphi}}$ for some function $h \in H^{\infty}$ such that $||h||_{\infty} \leq 1$.

Corollary 2. If T_{φ} is hyponormal, then T_{φ^*} is also hyponormal.

Proof. If T_{φ} is hyponormal, then, by Theorems 3 and by Proposition 5,

$$H_{\varphi} = T_h^* H_{\overline{\varphi}} = H_{\overline{\varphi}} T_{h^*}$$

for some function $h \in H^{\infty}$ such that $||h||_{\infty} \leq 1$ and, by Proposition 3 (2),

$$H_{\varphi^*} = H_{\varphi}^* = T_{h^*}^* H_{\overline{\varphi}^*} = T_{h^*}^* H_{\overline{\varphi}^*} = T_{h^*}^* H_{\overline{\varphi^*}}$$

and hence, by Theorem 3, T_{φ^*} is also hyponormal because $h^* \in H^{\infty}$ and $||h^*||_{\infty} = ||h||_{\infty} \le 1$ by Lemmas 1 and 2.

For φ in L^2 , we can define the **generalised Hankel operator** H_{φ} as follows;

$$H_{\varphi}f = J(I-P)L_{\varphi}f \quad \text{for} \quad f \in \mathcal{D}(H_{\varphi}),$$
 where
$$\mathcal{D}(H_{\varphi}) = \{f \in H^2 \ : \ \varphi f \in L^2\}.$$

 H_{φ} is generally unbounded and, for its definition domain $\mathcal{D}(H_{\varphi})$,

$$H^{\infty} \subseteq \mathcal{D}(H_{\varphi})$$

and we have the following.

Theorem 4. For $\varphi \in L^{\infty}$, let

$$\varphi = f + \varphi(0) + \overline{g},$$

where f and g in H_0^2 . Then, for any $\psi \in H^{\infty}$, we have

$$H_{\omega}\psi = H_{\overline{a}}\psi.$$

Proof.
$$H_{\varphi}\psi = J(I-P)(f\psi + \varphi(0)\psi + \overline{g}\psi) = J(I-P)(\overline{g}\psi) = H_{\overline{g}}\psi.$$

Remark 2. It is known that

$$L^{\infty} \neq H^{\infty} \oplus \overline{H_0^{\infty}}.$$

By Theorem 1.18, H_{φ} is a bounded extension of $H_{\overline{g}}|H^{\infty}$. Moreover we see that it is also a bounded extension of $H_{\overline{g}}$.

In fact, since $u \in \mathcal{D}(H_{\overline{g}})$ implies $\overline{g}u \in L^2$,

$$fu = \varphi u - \varphi(0)u - \overline{g}u \in L^2$$

because $\varphi \in L^{\infty}$ and hence $fu \in H^2$. Therefore

$$H_{\overline{a}}u = H_{\varphi}u \quad \text{for} \quad u \in \mathcal{D}(H_{\overline{a}})$$

and so H_{φ} is a bounded extension of $H_{\overline{g}}$.

By the same reason, $H_{\overline{\varphi}}$ is a bounded extension of $H_{\overline{f}}$.

As a special case of Theorem 1, we have the following.

Theorem 5. For $\varphi = f + \varphi(0) + \overline{g} \in L^{\infty}$, where f and g in H_0^2 and for some $\lambda \geq 0$, the following assertions are equivalent.

- $(1) \ H_{\varphi}^* H_{\varphi} \le \lambda^2 H_{\overline{\varphi}}^* H_{\overline{\varphi}}.$
- (2) $g = T_{h^*}^* f + c$ for some constant c and some function $h \in H^{\infty}$ such that $||h||_{\infty} \leq \lambda$.

Proof. If $g = T_{h^*}^* f + c$ for some constant c and some function $h \in H^{\infty}$ such that $||h||_{\infty} \leq \lambda$, then

$$c = g - T_{h^*}^* f = P(g - \overline{h^*} f) = P(\overline{\overline{g} - h^*} \overline{\overline{f}})$$

and $\overline{g} - h^* \overline{f} \in H^2$ and hence, by Theorem 4, for any $\psi \in H^{\infty}$,

$$||H_{\varphi}\psi|| = ||H_{\overline{g}}\psi|| = ||J(I-P)L_{h^*}\overline{f}\psi|| = ||T_{h^*}J(I-P)\overline{f}\psi|| \text{ by Lemma 3}$$

$$\leq ||T_{h^*}|| ||J(I-P)\overline{f}\psi|| = ||h||_{\infty}||H_{\overline{f}}\psi|| = ||h||_{\infty}||H_{\overline{\varphi}}\psi||.$$

And since $[H^{\infty}]^{\sim L^2} = H^2$,

$$H_{\varphi}^* H_{\varphi} \le \|h\|_{\infty}^2 H_{\overline{\varphi}}^* H_{\overline{\varphi}} \le \lambda^2 H_{\overline{\varphi}}^* H_{\overline{\varphi}}.$$

Conversely, if $H_{\varphi}^* H_{\varphi} \leq \lambda^2 H_{\overline{\varphi}}^* H_{\overline{\varphi}}$, then, by Theorem 1 and by Proposition 3 (2), there exists a function h in H^{∞} such that $||h||_{\infty} \leq \lambda$ and that $\varphi^* - \overline{\varphi}^* h \in H^{\infty}$ and hence $\varphi - \overline{\varphi} h^* \in H^{\infty}$ by Lemmas 1 and 2. Since

$$\varphi - \overline{\varphi}h^* = (f + \varphi(0) - \overline{\varphi(0)}h^* - gh^*) + (\overline{g} - \overline{f}h^*),$$

we have $\overline{g} - \overline{f}h^* \in H^2$ because $h^* \in H^{\infty}$. And then $\overline{\overline{g} - h^*\overline{f}} \in [H_0^2]^{\perp}$ and $P(\overline{\overline{g} - h^*\overline{f}}) = c$ (constant) and hence

$$c = P(g - \overline{h^*}f) = g - PL_{h^*}f = g - T_{h^*}f.$$

Corollary 3. ([2]) For $\varphi = f + \varphi(0) + \overline{g} \in L^{\infty}$, where f and g in H_0^2 , the following assertions are equivalent.

- (1) T_{φ} is hyponormal.
- (2) $g = T_{h^*} f + c$ for some constant c and some function $h \in H^{\infty}$ such that $||h||_{\infty} \leq 1$.

Proof. Since T_{φ} is hyponormal if and only if $H_{\varphi}^*H_{\varphi} \leq H_{\overline{\varphi}}^*H_{\overline{\varphi}}$ by Proposition 4, we have the conclusion by setting $\lambda = 1$ in Theorem 5.

References

- [1] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213(1964), 89-102.
- [2] C. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc., 103(1988), 809-812.
- [3] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(1966), 413-415.
- [4] D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc., 127(1967), 179-203.