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A bounded measurable function ¢ € L™ on the circle induces the multipli-

cation operator on L? called the Laurent operator L, given by
L,f = ¢f for f € L*.

And the Laurent operator induces in a natural way twin operators on H 2 called

Toeplitz operator T, given by
T,f = PL,f for f € H?,

where P is the orthogonal projection from L? onto H 2 and Hankel operator H,
‘given by
H,f =J(I — P)L,f for f € H?,

where J is the unitary operator on L? defined by
J(zT™)=2"" n=0,£1,£2,---.
Lemma 1. For f € L2, let f*(z) = f(Z). Then ||f*|l2 = ||f|lz and f* € L.
Particularly, if f € H?, then f* € H? also.

Lemma 2. For ¢ € L, ||¢*|lc = |l¢llec and ¢* € L. Particularly, if ¢ is

inner, then ¢* is also inner.
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Lemma 3. For ¢ € H®, J(I — P)Ly» =T,*J(I — P).
Concerning these twin operators, the following results are well known.

Proposition 1. ([1]) A € B(H?) is a Toeplitz operator if and only if

T,*AT, = A. And, in particular, A € B(H?) is analytic Toeplitz operator (i.e.,

A=

T, for some ¢ € H*) if and only if T, A = AT,.

Proposition 2. ([4]) Let ¢ be a non-constant inner function, and let Q

be the orthogonal projection from L? onto K = H2o T,H?. If A € B(K)
commutes with L, @), then there is a function 9 in H* such that ||¢||e = ||A4]|
and A =QLyQ.

Remark 1. In Proposition 2, we may assume that ¢ is a zero function or

an inner function. Because, in the case where ¢ = 0, Proposition 2 reduces to

Proposition 1 and, in the case where ¢ is a constant inner function, we may take

¥ = 0 because 4 = O.

ing.

Proposition 3. H, has the following properties ;
(1) T.*H, = H,T,
(Hence Ny, = {x € H?> ; Hyz = o} is invariant under 7,
and Ny, = {0} or Ny, = T,H?, where ¢ is inner)
(2) H,* = H,-
(3) Hapipy =aH, +BHy, o, BeC
(4) H, = O if and only if (I — P)p = o (i.e., p € H®)
(5) I, ]l = inf{llp + o : ¥ € 7

Now we state here the relations between these twin operators.
Proposition 4. H,*H, = 13, — 15T, and

7 Hz— H,*H, =T,*T, — T,T,*.
Proposition 5. For any ¥ € H*®, H,Ty = H,y and Ty*H, = H,Tys.

Concerning the operator inequality of Hankel operators, we have the follow-
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Theorem 1. The following assertions are equivalent.

(1) Hy,Hy,* < AH,,Hy,* for some A > 0.

(2) There exists a function A € H*™ such that ||h]lc < A for some A > 0
and that H,, = H,,T.

To prove this theorem, we need the following.

Lemma 4. ([3]) For A, B € B(H), the following assertions are equivalent.
(1) AA* < A2BB* for some A > 0. ,
(2) There exists a C € B(H) uniquely such that A = BC and that

(a) |ICI* =inf{u; AA* < uBB*}
() Na=Nc¢ and (c) CHC[B"H]".

Proof of Theorem 1. If H, H,* <XH,,H,,* for some A > 0, then, by
Lemma 4, there exists a A € B(H?) uniquely such that H,, = H,,A and that

(a) ”A“2 = inf{# : HWIH‘PI* S /‘HVP2H¢P2*} S )\2
(0) N, =Na and (o) AH? C [H,,"H'I™".

And then, by Proposition 3 (1), a,, =T.H 2 where ¢ is a zero function or an

inner function and, by Proposition 5, we have, for any ¥ € H,
A*Ty"Hp,* = A"Hyp,"Tye = Hyp,"Ty»
= Td)*H‘Pl* = T‘!/J*A*Htpz*
and hence
* % * * * ~ 2 .
(A*Ty* — Ty* A")[H,,* H*|™" = {o}. (1)
Since
(T, A— AT)H?, Hp,"H?) = (H?, (T,A— AT,)"H,," H?) =0 by (i),

(T,A — AT,)H? C Ny, = T,H? and Npg,_ is invariant under A and hence
[Hy,*H 2)~L* s invariant under A*. Since [Hspz,*H?]"'L2 is invariant under 7,*

by Proposition 3 (2) and (1) and since

(A*T,* — T," A%)[H,,* H~Y* = {0} by (i),
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A*|[Hy,* H?)~E® commutes with T,* [Hyp,* H2~~* and hence (A*|[H,,* H2 L)
commutes with QL,Q = (T,*|[H,,* H?~L’)*, where Q is the orthogonal projec-
tion from L? onto [H,,* H?|*%*. And, by Proposition 2 and Remark 1, there is
a function h in H* such that

* * ~ 2 * * * ~ 2 *
1hlleo = l(A|[Hp, " H?I™27) || = | A%|[Hop, * BTV < || A%]| = [|A]) < A
and (A*|[H¢2*H2]~L2)* = QLypQ. And then, for any f € H?, we have

He "f = AHy,"f = QLy"H,,* f = QTy* Hy,* f
= H,,"Thf =T3*H,,* f by Proposition 5

and Hy,* = Ty*H,,* and hence H,, = H,,T},.
As a special case of Theorem 1, we have the following.

Theorem 2. H, is hyponormal (ie., H,H,* < H,*H,) if and only if
H, = Hy*Ty for some h € H*™ such that ||h|e < 1.

Proof. Since H,*H, = H,+H,.* by Proposition 3 (2), the hyponormality
of H, is equivalent that there exists a function A € H* such that [|k||cc < 1 and
that H, = Hy+T, = H,*Tj, by Theorem 1 and by Proposition 3 (2).

Corollary 1. Every hyponormal Hankel operator is normal.

Proof. If H, is hyponormal, then H, = H,*T}, for some h € H* such that
llAllc < 1 by Theorem 2 and, by Propositions 3 (2) and 5,

H(,a' = H(p* - Th*H(p = H¢Tht = H(pv*Tht.

Since h* € H* and ||h*]lc = ||h||c by Lemmas 1 and 2, H,* = H,. is also
hyponormal by Theorem 2. Therefore H, is normal.

By Proposition 4, T, is hyponormal if and only if H,*H, < HF*Hz and, by
Proposition 3 (2), Hy« Hy«* < Hp+ Hz* and hence, by Theorem 1,

Hye = Hz T,



for some function h € H*™ such that |||l < 1 and, by using Proposition 3 (2)

again, we have the following result.

Theorem 3. T, is hyponormal if and only if H, = T,* Hz for some function
h € H* such that ||h||e < 1.

Corollary 2. If T, is hyponormal, then T . is also hyponormal.
Proof. If T, is hyponormal, then, by Theorems 3 and by Proposition 5;
H, =T, Hz = HF T}~
for some function h € H* such that ||h||o, < 1 and, by Proposition 3 (2),
Hpe = H,* = Tye* Hg* = Tye* Hpe = Tho Hor

and hence, by Theorem 3, T,,+ is also hyponormal because h* € H* and
|2*||cc = ||Plloc <1 by Lemmas 1 and 2.

For ¢ in L?, we can define the generalised Hankel operator H,

as follows ;

Hof =J(I-P)L,f for feD(H,),
where  D(H,)={f € H> : of € L*}.

H, is generally unbounded and, for its definition domain D(H,),
H* CD(H,)
and we have the following.

Theorem 4. For ¢ € L™ let

¢ =f+¢(0)+7,

where f and g in Hg?. Then, for any ¥ € H*®, we have

Hop = Hyy.
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Proof. Hy = J(I - P)(f1 + ¢(0) +7v) = J(I — P)(3¥) = Hyp.
Remark 2. It 1s known that
L® # H® @ Hy*™.

L g
By Theoremfg(r‘l'@, H, is a bounded extension of Hg|H*. Moreover we see that
it is also a bounded extension of Hg.

In fact, since u € D(Hy) implies gu € L,
fu=pu— (0)u — gu € L*
because ¢ € L* and hence fu € H?. Therefore
Hju=H,u  for u € D(Hy)

and so H, is a bounded extension of Hy.

By the same reason, Hy is a bounded extension of Hy.
As a special case of Theorem 1, we have the following.

Theorem 5. For ¢ = f + ¢(0) + g € L, where f and g in Hp? and for
some A > 0, the following assertions are equivalent.
(1) H,*H, < /\ZH;;*H;
(2) g = Tp+*f + ¢ for some constant ¢ and some function h € H* such that
IRl < A

Proof. If g = Ty+«*f + c for some constant ¢ and some function h € H™
such that ||h||cc < A, then

c=g—Th-*f=Plg—hf)=P(G-h*f)
and § — h*f € H? and hence, by Theorem 4, for any ¥ € H®,

|Ho9 |l = | Hgll = |7(I = P)La-Fll = |Tw*J (I = P)J¢|| by Lemma 3
<ITHNIE = PYFIl = lIhllooll H7¢ll = lRlloo | Hz4 .
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And since [H®]~F* = H?,
H,*H, < llhllﬁo 7 Hp < x? 7 Hp.

Conversely, if H,* H, < A?Hz* H, then, by Theorem 1 and by P-ropbsition 3
(2), there exists a function h in H* such that ||h]|cc < A and that ¢*—F*h € H®
and hence ¢ — ph* € H*® by Lemmas 1 and 2. Since

o —Bh" = (f +9(0) — p(O)h" — gh*) + (7 — Th"),

we have § — fh* € H? because h* € H*. And then g— h*f € [HZ]* and
P(g — h*f) = ¢ (constant) and hence

c=Plg—h*f)=g— PLp"f=9g—Tp"f.

Corollary 3. ([2]) For ¢ = f + ¢(0) + g € L*, where f and g in Hy?, the
following assertions are equivalent.
(1) T, is hyponormal.
(2) g = Tp+*f + ¢ for some constant ¢ and some function A € H* such that
lI~lloo < 1.

Proof. Since T, is hyponormal if and only if H,*H, < Hz* Hz by Propo-

sition 4, we have the conclusion by setting A = 1 in Theorem 5.
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