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HYPERBOLIC BESOV FUNCTIONS

SHAMIL MAKHMUTOV

Department of Mathematics, Hokkaido University

ABSTRACT. In this paper we study bounded holomorphic functions in the unit disk D with
given growth of hyperbolic derivative and application of these functions to composition
operators.

1. Introduction
Let D = {z: |z| < 1} be the unit disk in C with pseudohyperbolic metric

a—>
1—ab

p(a,b) =

and with hyperbolic metric

14 p(a,8)
1 —p(a, b)

Here dA(z) is a normalized area measure on D and dA(z) is hyperbolic area measure

ab(a, b) = %log

dA(z)

M) = Ty

Let B be the family of bounded holomorphic functions f(z), |f(z)| < 1, in D and

(z) = % be the hyperbolic derivative of f(z). Lvet fa(2) = f( 12_:_;), a€cD.

Definition. For 1 < p < oo hyperbolic analytic Besov class Bg consists of functions
f(z) € B which satisfy the condition

1

(1) 1513 = //((1—lz12>f*<z>>PdA<z>) < oo.
D

Classes B;,‘, 1 < p < 00, are Mobius invariant. By Schwarz-Pick lemma

(1= f*(2) <1
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for any f € B, i.e. B: = B , but M&bius transforms of D are not p-hyperbolic Besov
functions for 1 < p < co. It is easy to see that any function f(2), |f(z)| < k < 1, belongs
to all classes B{,‘, 1 <p<oo. Class B} is a class of hyperbolic Dirichlet functions.

Examples.

L Let Sy ={z=z+iy: |z|*+|y|* <1}, 0 < @ <1, and o : D — S, then
©1(z) ¢ B and p,(2) € Bl if p>2. If a <1 then ¢,(z) € BE.

2. It is known [4] that for hyperbolic Lipschitz functions cA4, 0 < @ < 1, ie.
functions which satisfy the condition sup o(f(u), f(v)) < K72, the necessary and

lu—v|<r
sufficient condition that f(z) € oA4 is (1 — |2]?)f*(2) = O((1 = |2]%)®) as |z| — 1.
Thus we can see that A1 C BI’}.
P

In chapter 2 we establish Lipschitz type properties of p-hyperbolic Besov functions
and prove that p-hyperbolic Besov functions don’t have angular derivatives for finite
values p. In chapter 3 we show that composition of Bloch functions and p-hyperbolic
Besov functions are p-analytic Besov functions.

2. Main properties

Classes Bz’,‘ satisfy nesting property B;} C B;‘ for p < ¢. It follows from the Schwarz-
Pick lemma and inequality

// o) (£7(2))7 dA(=)
= [[(@= kR @y - =2 aac)

D
< / / (1= [2[2)P=2(f*(2))? dA(2).
D

Theorem 1. If bounded function f(z) satisfies the condition

// // llZ3 :if;ﬁ) dA(z) dA(w) < oo

then f(z) € B}, 1<p<oo.
Proof.

f(z) - f(0)
1 - f(2)(0)

Taylor series we can obtain

Function ¢(z) = is holomorphic in D. Using an expansion of ¢g(z) on

77(0) = // 29(2) dA(2)|.
D
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Let g = f 0 p4(2), where p,(z) = lzft_z“z, a € D. Then

(1= |af?)f*(a)) < //(pfwa 2), £(a)))? dA(2)

and thus

J[@=tapys @y aa)

D .
< / [axa [ / (p(Fa(2), F(0)))P dA(2)
[//y ll_zj?ydA@ﬁM() < 0.

Theorem 2. If f(z) € B]’}, 1 < p< oo, then

JJ [[AE2LEE a2 daw) <
D D

Proof.

At first we estimate hyperbolic distance between f(z) and f(0).

o(F(2), F(0)) = | / Fe(t2)z dt]

f* (2)
tZI |2

= </01 (1- tz:z)m dt>% (/01 (1 (1t~2_|,2[)|1];2)(:2)) dt> 1
= (Z‘QZI_q—ll ((1_| = )) (/ (@ (;il;lzjl‘ )(:fz))z) )5

e ( B 1((1—t2I212)f*(t2))P dt)f
V1-z]| 1 —t?|z|?

Thus, there exists such C that

(- epPyal <| [

f _frltz) dt‘

1-¢P

Clz (1= #2|2]*) F*(t2))P
o(f(2), fF(0))? m/ 1_t2‘z‘2 dt , p>1.
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/ [ o(#(e). F0)7 dA(z) <

Then

|1 (1= #]2)f*(t2)
<C//dA e
21 = 2l f () AL o4 theorem
——C/ // (by Fubini’s the )

VI—1]z \/—?
t2
_C//Hl 1512||||J2€( )/ltz\/'m
<20 4 [ )@y aa.

We obtain that for 1 < p < oo and for some C;

é/a(f(z)’f((’))p dA(z) < Gy é/((1—|2|2)f*(2))”d.4(z).

A change of variables and some properties of Bergman kernal (see e.g. [5]) give

J] ] A e

= [[ @@ [[ o770, f2)dA(w)
<c 7/ aA(2) ; [(@ - P)f o wiw)paaq)
-/ /E;A(z) / / ?1 — w2 £ (w)? ks (w) PdA(w)
-/ / (1= P £ ()P dA(w) / [
| / [ - oy s @par)
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Theorem 3. For any 1 < p < oo there exists a constant C,, such that for any function
f(z) € Bg and z,w € D, o(f(z), f(w) £ 1,

= 1.

o(£(2), f(w)) < Colflmpolz,w)h, —+

SRR
|

Proof.
Since ||.|| g#, o, p are Mbius invariant it suffices to prove that there is a constant Cp
such that

,O(f(Z),f(O)) S Cp”fllBgO"(Z,O)%

for all f € B;x}: and all z € D.
f(z) = f(0)
L t )= .
e = )
f € B and z € D following Zhu [5]

or(z) = // ) daw).

Thus there exists a constant C such that (see [2], [3])

Since @ ¢(z) is holomorphic function in D then for any

[w?

(), 7(0)) = lps(2)] < / [ o)l ddw)

lwl * 2
<a, / [ o )1 = b)) dA(w)

sa ffo-wnr () oo

By Holder inequality and 1.4.10 of [3] we get

0

p(f(2), £(0)) < Cillflisn (/ (<1|1
. D

— 2|29

dA<w>) < || lmro(z,0)%.

When points a and b lie clbsely one to another the behaviours of hyperbolic distance
o(a,b) and pseudohyperbolic distance p(a,b) are the same. Thus for sufficiently small
T there is a constant C' such that for any z,w € D, o(z,w) < T,

o(f(2), f(w)) < C | fllpro(z,w)7.

Let ¢ : D — D analytic and " = {|z|] = 1}.
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Definition. [1] Bounded function ¢(z) has a finite angular derivative at ¢ on unit circle
[ if there isn on I so that ‘P(z—le—Q has a finite nontangantial limit as z — (.

By the Julia-Caratheodory Theorem [1] function cp(z) has a finite angular derivative
at ¢ if and only if
= le(=)l _

liminf < 0.
z2—( 1- |Z|

Let ¢ be a point on the unit circle ', 0 < § < 1,0 < ¢ < 7 and A¢(b,e) = {z:
|z = ¢| < 6,]arg(¢) — arg(2)| < €}.

Theorem 4. Functions of B;}, 1 < p < o0, don’t have angular derivatives.

Proof.
Suppose that ¢(z) € BI’,‘, 1 < p < o0, and ¢(z) has an angular derivative at a point

¢ € I'. Then by the Julia-Caratheodory Theorem }—lle(zZM ~ |¢'(¢)| for sufficiently
small § and z € A¢(é,¢) and moreover, |¢'(2)] & |¢'(¢)] for z € A¢(6,¢). Thus

/((1—|z|)«p a2 [[@-EPeErae~ [ ae=

Ac(6,€) Ac(b,e)

3. Composition operators

Let B be Bloch space of holomorphic functions in D. By the definition (e.g. [5])
f(z) e Bif

i (1= [z)If'(2)] < co.

Holomorphic in D function f(z) belongs to the analytic Besov space By, 1 < p < oo,

if
I£lls, = (//(1 - |z|2)p|f'(z)|pd)\(z)> < oo
D
and B, = B.

Let X be a normed subspace of B and ¢(z) be a holomorphic self map of the unit
disk D. We say that composition operator Cy, : B — X is compact if

Aim [[foe—fo(xrp)llx =0

where x(z) is a characteristic function of the disk D, = rD

Xr(z)={1’ lz] <r

0, lz| > r.
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Theorem 5. For every ¢(z) € BI’,’, 1< p< o0, and any f € B composition fop € B,.
Composition operator C, is a compact.

Proof.
Let f € B and sup(1 — |2|?)|f'(2)| = My. Let ©(z) € B} and ||o(2)|lgs = M,. If
z€D P

9(2) = f 0 p() then

loC=)lts = / / (1= |2P)Plg' ()P dA(z) =

- / (1= 2P ()P () dA(2) =
D

= / (1= 2[)P(¢*(2))P(1 = le(2)* )P f(2)IP dA(2) < MT - M < oo.
D
Now we prove compactness of operator C,.

1f(¢(2)) = f(xr - e(2DIlB, =

= [[a-krrice o(2))P dA(2) <

D\D,

<M [[a-1preey a.

D\D,
The last integral tends to zero as r — 1 because ¢p(z) € BY.

Theorem 6. If for every Bloch function f(z) the composition f o ¢ is a p-analytic
Besov function, 1 < p < oo, then ¢(z) € Bg.

Proof.
Ramey and Ullrich [2] constructed such Bloch functions f and g that

F@I+1gG 2 7=

Then for every p > 1

K
! P ! 4 > -
If'(2)IP +1g' ()P 2 A=
and thus

Epllels < Nfeelll, +llgoelp, <oo
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