SHAMIL MAKHMUTOV

Department of Mathematics, Hokkaido University

ABSTRACT. In this paper we study bounded holomorphic functions in the unit disk D with given growth of hyperbolic derivative and application of these functions to composition operators.

1. Introduction

Let $D = \{z : |z| < 1\}$ be the unit disk in C with pseudohyperbolic metric

$$\rho(a,b) = \left| \frac{a-b}{1-\bar{a}b} \right|$$

and with hyperbolic metric

$$\sigma(a,b) = \frac{1}{2} \log \frac{1 + \rho(a,b)}{1 - \rho(a,b)}.$$

Here dA(z) is a normalized area measure on D and $d\lambda(z)$ is hyperbolic area measure

$$d\lambda(z) = \frac{dA(z)}{(1-|z|^2)^2}.$$

Let B be the family of bounded holomorphic functions f(z), |f(z)| < 1, in D and $f^*(z) = \frac{|f'(z)|}{1 - |f(z)|^2}$ be the hyperbolic derivative of f(z). Let $f_a(z) = f(\frac{z+a}{1+\bar{a}z})$, $a \in D$.

Definition. For $1 \leq p \leq \infty$ hyperbolic analytic Besov class B_p^h consists of functions $f(z) \in B$ which satisfy the condition

(1)
$$||f||_{B_p^h} = \left(\iint_D ((1-|z|^2)f^*(z))^p \, d\lambda(z) \right)^{\frac{1}{p}} < \infty.$$

Classes $B_p^h,\, 1 \leq p \leq \infty$, are Möbius invariant. By Schwarz-Pick lemma

$$(1-|z|^2)f^*(z) \le 1$$

for any $f \in B$, i.e. $\mathcal{B}_{\infty}^{h} = B$, but Möbius transforms of D are not p-hyperbolic Besov functions for $1 \le p < \infty$. It is easy to see that any function f(z), $|f(z)| \le k < 1$, belongs to all classes B_p^h , $1 \le p \le \infty$. Class B_2^h is a class of hyperbolic Dirichlet functions. Examples.

- 1. Let $S_{\alpha} = \{z = x + iy : |x|^{\alpha} + |y|^{\alpha} < 1\}$, $0 < \alpha \le 1$, and $\varphi_{\alpha} : D \to S_{\alpha}$ then $\varphi_{1}(z) \notin B_{2}^{h}$ and $\varphi_{1}(z) \in B_{p}^{h}$ if p > 2. If $\alpha < 1$ then $\varphi_{\alpha}(z) \in B_{2}^{h}$.

 2. It is known [4] that for hyperbolic Lipschitz functions $\sigma \Lambda_{\alpha}$, $0 < \alpha \le 1$, i.e. functions which satisfy the condition $\sup_{|u-v| \le \tau} \sigma(f(u), f(v)) \le K\tau^{\alpha}$, the necessary and

sufficient condition that $f(z) \in \sigma \Lambda_{\alpha}$ is $(1-|z|^2)f^*(z) = O((1-|z|^2)^{\alpha})$ as $|z| \to 1$. Thus we can see that $\sigma \Lambda_{\frac{1}{n}} \subset B_p^h$.

In chapter 2 we establish Lipschitz type properties of p-hyperbolic Besov functions and prove that p-hyperbolic Besov functions don't have angular derivatives for finite values p. In chapter 3 we show that composition of Bloch functions and p-hyperbolic Besov functions are p-analytic Besov functions.

2. Main properties

Classes B_p^h satisfy nesting property $B_p^h \subset B_q^h$ for p < q. It follows from the Schwarz-Pick lemma and inequality

$$\iint_{D} (1 - |z|^{2})^{q-2} (f^{*}(z))^{q} dA(z)$$

$$= \iint_{D} ((1 - |z|^{2}) f^{*}(z))^{q-p} (1 - |z|^{2})^{p-2} (f^{*}(z))^{p} dA(z)$$

$$\leq \iint_{D} (1 - |z|^{2})^{p-2} (f^{*}(z))^{p} dA(z).$$

Theorem 1. If bounded function f(z) satisfies the condition

$$\iint\limits_{D}\iint\limits_{D}\int\limits_{D}\frac{\rho(f(z),f(w))^{p}}{|1-z\bar{w}|^{4}}\,dA(z)\,dA(w)<\infty$$

then $f(z) \in B_p^h$, $1 \le p < \infty$.

Proof.

Function $g(z) = \frac{f(z) - f(0)}{1 - f(z)\overline{f(0)}}$ is holomorphic in D. Using an expansion of g(z) on Taylor series we can obtain

$$f^*(0) = \left| \iint_D \bar{z} g(z) dA(z) \right|.$$

Let $g = f \circ \varphi_a(z)$, where $\varphi_a(z) = \frac{z+a}{1+\bar{a}z}$, $a \in D$. Then

$$((1-|a|^2)f^*(a))^p \le \iint_D (\rho(f \circ \varphi_a(z), f(a)))^p \, dA(z)$$

and thus

$$\iint_{D} ((1-|a|^{2})f^{*}(a))^{p} d\lambda(a)$$

$$\leq \iint_{D} d\lambda(a) \iint_{D} (\rho(f_{a}(z), f(a)))^{p} dA(z)$$

$$= \iint_{D} \iint_{D} \frac{\rho(f(z), f(w))^{p}}{|1-z\bar{w}|^{4}} dA(z) dA(w) < \infty.$$

Theorem 2. If $f(z) \in B_p^h$, 1 , then

$$\iint\limits_{D}\iint\limits_{D}\int\limits_{D}\frac{\sigma(f(z),f(w))^{p}}{|1-z\bar{w}|^{4}}\,dA(z)\,dA(w)<\infty.$$

Proof.

At first we estimate hyperbolic distance between f(z) and f(0).

$$\sigma(f(z), f(0)) = \left| \int_{0}^{1} f^{*}(tz)z \, dt \right|$$

$$= \left| \int_{0}^{1} \frac{f^{*}(tz)}{1 - t^{2}|z|^{2}} (1 - t^{2}|z|^{2})z \, dt \right| \leq \left| \int_{0}^{1} \frac{f^{*}(tz)}{1 - t^{2}|z|^{2}} \, dt \right|$$

$$\leq \left(\int_{0}^{1} \frac{|z|^{q}}{(1 - t^{2}|z|^{2})^{\frac{1+q}{2}}} \, dt \right)^{\frac{1}{q}} \left(\int_{0}^{1} \frac{((1 - t^{2}|z|^{2})f^{*}(tz))^{p}}{(1 - t^{2}|z|^{2})^{\frac{1}{2}}} \, dt \right)^{\frac{1}{p}}$$

$$= \left(\frac{2|z|^{q-1}}{q-1} \left(\frac{1}{(1 - |z|)^{\frac{q-1}{2}}} - 1 \right) \right)^{\frac{1}{q}} \left(\int_{0}^{1} \frac{((1 - t^{2}|z|^{2})f^{*}(tz))^{p}}{(1 - t^{2}|z|^{2})^{\frac{1}{2}}} \, dt \right)^{\frac{1}{p}}$$

$$\leq C \left(\frac{|z|}{\sqrt{1 - |z|}} \int_{0}^{1} \frac{((1 - t^{2}|z|^{2})f^{*}(tz))^{p}}{\sqrt{1 - t^{2}|z|^{2}}} \, dt \right)^{\frac{1}{p}}.$$

Thus, there exists such C that

$$\sigma(f(z),f(0))^p \leq \frac{C|z|}{\sqrt{1-|z|}} \int_0^1 \frac{((1-t^2|z|^2)f^*(tz))^p}{\sqrt{1-t^2|z|^2}} \, dt \quad , \quad p>1.$$

Then

$$\iint_{D} \sigma(f(z), f(0))^{p} dA(z) \leq$$

$$\leq C \iint_{D} dA(z) \int_{0}^{1} \frac{|z|((1-t^{2}|z|^{2})f^{*}(tz))^{p}}{\sqrt{1-|z|^{2}}\sqrt{1-t^{2}|z|^{2}}} dt$$

$$= C \int_{0}^{1} \iint_{tD} \frac{|z|((1-t^{2}|z|^{2})f^{*}(tz))^{p}}{\sqrt{1-|z|^{2}}} \cdot \frac{dA(z) \frac{dt}{t^{3}}}{\sqrt{1-\frac{|z|^{2}}{t^{2}}}} = \text{(by Fubini's theorem)}$$

$$= C \iint_{D} \frac{|z|((1-t^{2}|z|^{2})f^{*}(z))^{p}}{\sqrt{1-|z|^{2}}} dA(z) \int_{|z|}^{1} \frac{dt}{t^{2}\sqrt{t}\sqrt{t^{2}-|z|^{2}}}$$

$$\leq 2C \iint_{D} ((1-|z|^{2})f^{*}(z))^{p} dA.$$

We obtain that for $1 and for some <math>C_1$

$$\iint_{D} \sigma(f(z), f(0))^{p} dA(z) \leq C_{1} \iint_{D} ((1 - |z|^{2}) f^{*}(z))^{p} dA(z).$$

A change of variables and some properties of Bergman kernal (see e.g. [5]) give

$$\iint_{D} \iint_{D} \frac{\sigma(f(z), f(w))^{p}}{|1 - z\overline{w}|^{4}} dA(z) dA(w)$$

$$= \iint_{D} d\lambda(z) \iint_{D} \sigma^{p}(f \circ \varphi_{z}(w), f(z)) dA(w)$$

$$\leq C \iint_{D} d\lambda(z) \iint_{D} ((1 - |w|^{2}) f \circ \varphi_{z}^{*}(w))^{p} dA(w)$$

$$= \iint_{D} d\lambda(z) \iint_{D} (1 - |w|^{2})^{p} f^{*}(w)^{p} |k_{z}(w)|^{2} dA(w)$$

$$= \iint_{D} (1 - |w|^{2})^{p} f^{*}(w)^{p} dA(w) \iint_{D} \frac{dA(z)}{|1 - z\overline{w}|^{4}}$$

$$= \iint_{D} (1 - |w|^{2})^{p} f^{*}(w)^{p} d\lambda(w).$$

Theorem 3. For any $1 there exists a constant <math>C_p$ such that for any function $f(z) \in \mathcal{B}_p^h$ and $z, w \in D$, $\sigma(f(z), f(w) \leq 1$,

$$\sigma(f(z), f(w)) \le C_p ||f||_{B_p^h} \sigma(z, w)^{\frac{1}{q}}, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

Proof.

Since $\|.\|_{B_p^h}$, σ , ρ are Möbius invariant it suffices to prove that there is a constant C_p such that

$$\rho(f(z), f(0)) \le C_p ||f||_{B_p^h} \sigma(z, 0)^{\frac{1}{q}}$$

for all $f \in B_p^h$ and all $z \in D$. Let $\varphi_f(z) = \frac{f(z) - f(0)}{1 - \overline{f(0)}f(z)}$. Since $\varphi_f(z)$ is holomorphic function in D then for any

$$\varphi_f(z) = \iint\limits_D \frac{1 - |w|^2}{\bar{w}(1 - z\bar{w})^2} \varphi_f'(w) \, dA(w).$$

Thus there exists a constant C_1 such that (see [2], [3])

$$\rho(f(z), f(0)) = |\varphi_f(z)| \le \iint_D \frac{1 - |w|^2}{|w||1 - z\bar{w}|^2} |\varphi_f'(w)| \, dA(w)$$

$$\le C_1 \iint_D \frac{1 - |w|^2}{|1 - z\bar{w}|^2} f^*(w) (1 - |\varphi_f(w)|^2) \, dA(w)$$

$$\le C_1 \iint_D (1 - |w|^2) \, f^*(w) \left(\frac{1 - |w|^2}{|1 - z\bar{w}|^2}\right)^2 \, d\lambda(w).$$

By Hölder inequality and 1.4.10 of [3] we get

$$\rho(f(z), f(0)) \le C_1 \|f\|_{B_p^h} \left(\iint_D \frac{(1 - |w|^2)^{2q - 2}}{|1 - z\overline{w}|^{2q}} dA(w) \right)^{\frac{1}{q}} \le C_2 \|f\|_{B_p^h} \sigma(z, 0)^{\frac{1}{q}}.$$

When points a and b lie closely one to another the behaviours of hyperbolic distance $\sigma(a,b)$ and pseudohyperbolic distance $\rho(a,b)$ are the same. Thus for sufficiently small τ there is a constant C such that for any $z, w \in D$, $\sigma(z, w) \leq \tau$,

$$\sigma(f(z), f(w)) \le C \|f\|_{B_{\mathfrak{p}}^h} \sigma(z, w)^{\frac{1}{q}}.$$

Let $\varphi: D \to D$ analytic and $\Gamma = \{|z| = 1\}.$

Definition. [1] Bounded function $\varphi(z)$ has a finite angular derivative at ζ on unit circle Γ if there is η on Γ so that $\frac{\varphi(z)-\eta}{z-\zeta}$ has a finite nontangantial limit as $z \to \zeta$.

By the Julia-Caratheodory Theorem [1] function $\varphi(z)$ has a finite angular derivative at ζ if and only if

$$\liminf_{z \to \zeta} \frac{1 - |\varphi(z)|}{1 - |z|} < \infty.$$

Let ζ be a point on the unit circle Γ , $0 < \delta < 1$, $0 < \varepsilon < \frac{\pi}{2}$ and $\Delta_{\zeta}(\delta, \varepsilon) = \{z : |z - \zeta| < \delta, |arg(\zeta) - arg(z)| < \varepsilon\}.$

Theorem 4. Functions of B_p^h , 1 , don't have angular derivatives.

Proof.

Suppose that $\varphi(z) \in B_p^h$, $1 , and <math>\varphi(z)$ has an angular derivative at a point $\zeta \in \Gamma$. Then by the Julia-Caratheodory Theorem $\frac{1 - |\varphi(z)|}{1 - |z|} \sim |\varphi'(\zeta)|$ for sufficiently small δ and $z \in \Delta_{\zeta}(\delta, \varepsilon)$ and moreover, $|\varphi'(z)| \approx |\varphi'(\zeta)|$ for $z \in \Delta_{\zeta}(\delta, \varepsilon)$. Thus

$$\iint\limits_{D} ((1-|z|^2)\varphi^*(z))^p \, d\lambda(z) \ge \iint\limits_{\Delta_{\zeta}(\delta,\varepsilon)} ((1-|z|^2)\varphi^*(z))^p \, d\lambda(z) \approx \iint\limits_{\Delta_{\zeta}(\delta,\varepsilon)} d\lambda(z) = \infty.$$

3. Composition operators

Let \mathcal{B} be Bloch space of holomorphic functions in D. By the definition (e.g. [5]) $f(z) \in \mathcal{B}$ if

$$\lim_{|z| \to 1} (1 - |z|^2) |f'(z)| < \infty.$$

Holomorphic in D function f(z) belongs to the analytic Besov space $B_p, 1 , if$

$$||f||_{B_p} = \left(\iint_D (1-|z|^2)^p |f'(z)|^p d\lambda(z)\right)^{\frac{1}{p}} < \infty$$

and $B_{\infty} = \mathcal{B}$.

Let X be a normed subspace of \mathcal{B} and $\varphi(z)$ be a holomorphic self map of the unit disk D. We say that composition operator $C_{\varphi}: \mathcal{B} \to X$ is compact if

$$\lim_{r \to 1-0} \|f \circ \varphi - f \circ (\chi_r \varphi)\|_X = 0$$

where $\chi_r(z)$ is a characteristic function of the disk $D_r = rD$

$$\chi_r(z) = \begin{cases} 1, & |z| \le r \\ 0, & |z| > r. \end{cases}$$

Theorem 5. For every $\varphi(z) \in B_p^h$, $1 , and any <math>f \in \mathcal{B}$ composition $f \circ \varphi \in B_p$. Composition operator C_{φ} is a compact.

Proof.

Let $f \in \mathcal{B}$ and $\sup_{z \in D} (1 - |z|^2)|f'(z)| = M_f$. Let $\varphi(z) \in B_p^h$ and $\|\varphi(z)\|_{B_p^h} = M_{\varphi}$. If $g(z) = f \circ \varphi(z)$ then

$$||g(z)||_{B_p^h}^p = \iint_D (1 - |z|^2)^p |g'(z)|^p d\lambda(z) =$$

$$= \iint_D (1 - |z|^2)^p |f'_{\varphi}(z)|^p |\varphi'(z)|^p d\lambda(z) =$$

$$= \iint_D (1 - |z|^2)^p (\varphi^*(z))^p (1 - |\varphi(z)|^2)^p |f'_{\varphi}(z)|^p d\lambda(z) \le M_f^p \cdot M_{\varphi}^p < \infty.$$

Now we prove compactness of operator C_{φ} .

$$||f(\varphi(z)) - f(\chi_r \cdot \varphi(z))||_{B_p}^p =$$

$$= \iint_{D \setminus D_r} (1 - |z|^2)^p |(f \circ \varphi(z))'|^p d\lambda(z) \le$$

$$\le M_f^p \iint_{D \setminus D_r} (1 - |z|^2)^p \varphi^*(z))^p d\lambda(z).$$

The last integral tends to zero as $r \to 1$ because $\varphi(z) \in B_b^p$.

Theorem 6. If for every Bloch function f(z) the composition $f \circ \varphi$ is a p-analytic Besov function, $1 , then <math>\varphi(z) \in B_p^h$.

Proof.

Ramey and Ullrich [2] constructed such Bloch functions f and g that

$$|f'(z)| + |g'(z)| \ge \frac{1}{1 - |z|^2}.$$

Then for every p > 1

$$|f'(z)|^p + |g'(z)|^p \ge \frac{K_p}{(1-|z|^2)^p}.$$

and thus

$$K_p \|\varphi\|_{B_p^n}^p \le \|f \circ \varphi\|_{B_p}^p + \|g \circ \varphi\|_{B_p}^p < \infty.$$

REFERENCES

- 1. C. Cowen, B. Maccluer, Composition operators on spaces of analytic functions, CRC Press, New York, 1995.
- 2. W. Ramey, D. Ullrich, Bounded mean oscillations of Bloch pullbacks, Math. Ann. 291 (1991), 591-606.
- 3. W. Rudin, Function Theory on the Unit Ball of Cⁿ, Springer-Verlag, New York/Berlin, 1980.
- 4. S. Yamashita, Smoothness of the boundary values of functions bounded and holomorphic in the disk, Trans. Amer. Math. Soc. 272 (1982), no. 2, 539-544.
- 5. K. Zhu, Operator theory in function spaces, Pure and Applied Mathematics, vol. 139, Marcel Dekker, New York, 1990.

Department of Mathematics
Hokkaido University
Sapporo 060
Japan
e-mail: makhm@euler.math.hokudai.ac.jp