Title
F-algebra M of holomorphic functions
(Spaces of Analytic and Harmonic Functions and Operator Theory)

Author(s)
Kim, Hong Oh

Citation
数理解析研究所講究録 数理科学研究

Issue Date
1996-04

URL
http://hdl.handle.net/2433/60247

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
F-algebra M of holomorphic functions

Hong Oh Kim
KAIST, Tagjon, KOREA

1. Introduction.

Let U be the unit disc $\{ |z| < 1 \}$ in \mathbb{C}. A function f holomorphic in U is said to belong to the class M if

$$\rho(f) \equiv \int_0^{2\pi} \log(1 + Mf(\theta)) \, d\theta < \infty$$

where $Mf(\theta) = \sup_{0 \leq r < 1} |f(re^{i\theta})|$ and $\log^+ x = \max(\log x, 0)$, $x > 0$. The class M was introduced and studied in [1, 2, 3, 4, 5]. The class M is related to the usual Hardy space $H^p(p > 0)$ and the Nevanlinna class N^+ as

$$\bigcup_{p > 0} H^p \subsetneqq M \subsetneqq N^+$$

The class M with the metric $d(f, g) = \rho(f - g)$ is an F-algebra, i.e., a topological vector space with a complete translation invariant metric in which multiplication is continuous. The class M has many similarities with N^+, but it is not fully studied as N^+. In this report we wish to summarize the works on the class M [1, 2, 3, 4, 5] and some open problems. We refer to [7] for the Hardy space and the Smirnov class.

2. M as a class of functions.

For a real-valued function h in $L^1(\partial U)$, we let

$$f(z) = \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} h(e^{it}) \, dt \right).$$

We have

2.1 Theorem. If $P[h^+] \in \text{Re } H^1$, then $f \in M$ where $P[h^+]$ is the Poisson integral of $h^+ = \max(h, 0)$. The converse is false.

2.2 Problem. Find a necessary and sufficient condition on h in order that $f \in M$. That is, characterize those outer functions in M.

Unlike N^+, the inner factor cannot be cancelled in M as in the following theorem.
2.3 Theorem. [1] There exists an f in M whose outer factor F is not in M. It is easy to see that a finite Blaschke factor of $f \in M$ can be cancelled in M but we do not know whether an infinite Blaschke factor of f can be cancelled in M or not.

2.4 For $\alpha > 1$, we define

$$M_\alpha f(e^{i\theta}) = \sup \{|f(z)| : z \in \Gamma_\alpha(e^{i\theta})\}$$

where $\Gamma_\alpha(e^{i\theta})$ is the nontangential region at $e^{i\theta}$ defined as

$$\Gamma_\alpha(e^{i\theta}) = \{z \in U : |e^{i\theta} - z| < \frac{\alpha}{2} (1 - |z|^2)\}$$

In the definition of M, the radial maximal function $Mf(e^{i\theta})$ can be replaced by the nontangential maximal function $M_\alpha f(e^{i\theta})$. Precisely we have

2.5 Theorem. There exists a positive constant C_α such that

$$\int_0^{2\pi} \log (1 + Mf(e^{i\theta})) d\theta \leq C_\alpha \int_0^{2\pi} \log (1 + Mf(e^{i\theta})) d\theta$$

2.6 Corollary. The class M is invariant under the composition of automorphisms of the unit disc U. More precisely, if $M \in M$ then $f \circ \varphi \in M$ for any $\varphi \in \text{Aut}(U)$.

2.7 Problem. Is M invariant under the composition of inner functions? Recall that N^+ is invariant under the composition of inner functions.

For the boundary values of functions in M, the following is proved in [5].

2.8 Theorem. [5] A measurable function $g(e^{i\theta})$ on ∂U coincides with the angular boundary value of some function f in M if and only if there exists a sequence of polynomials p_n with properties:

(a) $p_n(e^{i\theta}) \rightarrow g(e^{i\theta})$ a.e. on ∂U and

(b) $\lim_{n \to \infty} \int_0^{2\pi} \log (1 + Mp_n(\theta)) d\theta < \infty$.

3. M as an F-space

It is proved in [1] that M with the metric $d(f, g) = \rho(f - g)$ is a separable F-space. The space M has many similarities as N^+ as F-spaces.

3.1 Theorem. M is not locally bounded.

3.2 Theorem. If Λ is a continuous linear functional on M, then there exists a $g \in A^\infty(U)$ (i.e., g is analytic in U and C^∞ on \overline{U}) such that
\[\Lambda f = \lim_{r \to 1} \int_{0}^{2\pi} f(re^{i\theta})\overline{g(e^{i\theta})}d\theta, \quad f \in M. \]

Conversely, if \(g \in A^\infty(U) \) and if

\[\Lambda f = \lim_{r \nearrow 1} \int_{0}^{2\pi} f(re^{i\theta})\overline{g(e^{i\theta})}d\theta \]

exists for all \(f \in M \), then \(\Lambda \) defines a continuous linear functional on \(M \).

3.3 Problem. Describe \(g \in A^\infty(U) \) more precisely in the above theorem.

3.4 Theorem. \(M \) is not locally convex.

4. \(M \) as an \(F \)-algebra

As an \(F \)-algebra \(M \), the invertible elements, multiplicative linear functionals, closed maximal ideals and onto algebra endomorphisms of \(M \) are determined as we see in the following theorems.

4.1 Theorem. The only invertible elements of \(M \) are those outer function \(f \) with \(\log |f| \in \text{Re} H^1 \).

4.2 Theorem. \(\gamma \) is a nontrivial multiplicative linear functional on \(M \) if and only if \(\gamma(f) = f(\lambda), \quad f \in M, \) for some \(\lambda \in U \). Therefore, every nontrivial multiplicative linear functional is continuous.

4.3 Theorem. Every closed maximal ideal of \(M \) is the kernel of a multiplicative linear functional.

4.4 Theorem. There exists a maximal ideal \(M \) which is not the kernel of a multiplicative linear functional.

4.5 Theorem. \(\Gamma : M \to M \) is an onto algebra endomorphism if and only if \(\Gamma(f) = f \circ \varphi, f \in M, \) for some automorphism \(\varphi \) of \(U \). In particular, \(\Gamma \) is invertible.
References