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Core in a Cooperative Dynkin’s Stopping Problem

BHIKE BEE  KXiF #|&X ( Yoshio Ohtsubo )

Abstract. We consider multiperson cooperative stopping game of Dynkin’s type. We
are interested in Pareto optimal stopping times which dominates a conservative value for
each player. The set of such a Pareto optimal stopping times is called core. Such a core is
necessarily nonempty. We first give necessary and sufficient conditions for the core to be
nonempty. Secondly we give a characterization of core. Also, by the method of scalarization

we find e-Pareto optimal stopping times for each player.

1. Introduction.

Let (2, F, P) be a probability space and (F,).eny an increasing family of sub-o-fields of
F, where N = {0,1,2,...} is a discrete time space.

Let X(n) = ((X1(n), X3(n),...,X,(n)) : n € NP) be a vector-valued stochastic process
on (Q,F,P) and on p-dimensional discrete time space NP such that X(n) is Fumin, n,-
measurable and sup, ¢y, max; | X;(n) | is integrable, where n = (ny,no,...,n,) € NP,

For each k € N, we denote by Ay the class of (71,72, ...,7,) such that ; (¢ = 1,2,...,p) is
(F,)-stopping time and k£ < min; 7; < 00 a.s..

Now we consider the following coopetative stopping game. There are p players and
each player ¢ chooses stopping time 7; (¢ = 1,2,...,p) such that (71, 7,...,7,) € Ag. Then
the sth player (¢ = 1,2,...,p) gets the reward X;(m1,72,...,7p). The aim of the ith player
is to maximize the expected gain E[X;(71,72,...,T,)] with respect to 7;, cooperating with
other players. However, the stopping time chosen by one of them generally depends upon
one decided by other, even if they cooperate. Thus we shall use the concept of Pareto
optimality as in the usual cooperative game of the game thery or the multiobjective problem

of mathematical programming.

2. ’Core. :
Before giving the definition of Pareto optimality, we define partial orders in the p— dimen-

sional Euclidean space as follows: for two vectors z = (1, 22, ...,2,) and y = (y1,Y2, .-, Yp),
z>yifx; >y, forali;z 2yifz; 2y, foralli;z=yifz; =y, foralls;z>yif
r 2 yand z #y.

We define a conditional expected reward by G:(mi, 7, ..., T,) = E[X;(1,72, s Tp) | Fa]
for player ¢ (: = 1,2, ...,p), and a vector by

G (71, T2y oy Tp) = (G}L('rl, T2y ey Tp), Gi(ﬁ, T2y ey Tp)y ooy GE(T1, T2y ey Tp))
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and let e = (1,1,...,1).
For the sake of simplicity, without further comments we assume that all inequalities and
equalities between random variables hold in the sense of “almost surely”.

‘Forn € N and ¢ 2 0, we say that (75,755 T5) in Ay, is e~weak (resp. strong) Pareto

optimal at n if there is no (7y,7,,...,7,) in A, such that
G (11,72, ey Tp) > Gr(75, 75, . Ty ) + e,

(resp.Gr (11,72, s Tp) 2 GH(75, 75, .., 75 ) + €€).

We shall simply call a 0-weak (resp. 0-strong) Pareto optimal pair a weak (resp. strong)
Pareto optimal one.

Next, we introduce a core which is a subset of Pareto optimal pairs. Let Z = (Z, : n €
N) = ((Z;,Z%,...,ZE) : n € N) be a vector-valued stochastic process on (9, F, P) such
that (Z; : n € N) is adapted to (F,) and bounded. For ¢ = 0, we define e-core C5(Z)
at time n by the class of all (7], 75,...,7;) in A, such that (7f,75,...,7¢) is e-weak Pareto
optimal at n and inequality

G (15,75, ...,7';) > 7, —ce (1)

holds. This Z* is one called threat functional and is interpreted as a minimum value which
the ith player is able to compromise with.

For example, when p = 2, X;(n,k) = a,k > n, X (k,n) = b,k > n+1,X,(k,n) = a,k >
n,Xs(n,k) = b,k >n+1,and Z, = c (i = 1,2,n€ N) for constants a,b and c satisfying
a < ¢ < b, we have G, = {(a,b),(b,a),(a,a)}, n€ N, and vectors (a, b) and (b, a) correspond
weak (and strong) Pareto optimal pairs. Here G, = {G}(71, 72, ..., ) | (71,725, Tp) € An}.

In general e~core C;(Z) may be empty, even if ¢ is positive and Z! < o (i =1,2,...,p).

However, since there is no pair (7,,0,) satisfying (1) for sufficiently small ¢, e~core C5(Z)
is empty.

In this section we give necessary and sufficient conditions for e-core C%(Z) (e > 0) to be
nonempty, and find (75,75, ...,75) in CY(Z).

To end this, for given other bounded processes M* = (M}), i = 1,2,...,pand (1, 74, ..., )
€ A, we define random variables by, if these exist,

M — G (1,7, ey Tp)

n

Vi (Tay Tay ey Tp) = WU 7 , t=1,2,..,p

YTy T2y ey Tp) = m;a,x{’yfb(ﬁ, Toy ey Tp) b
and a minimum value process v* = () by

= (M,Z) = essinf  4,(71, 7200y Tp)-

(T1,7240-0,Tp)EAR
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Here M may be a goal. The following assumption is natural in our problem.

ASSUMPTION 2.1. M: 2 oi 2 Z! and M > Z; for all i an all i = 1,2,...,p, where

i (]
an = €88 Sup(’rl ,T2,...,Tp)€AnGn(T1’ 72’ R Tp)'

If Assumption 2.1 is satisfied, ~;, is nonnegative, but it is not necessarily less than or
equal to 1. Indeed, in the above example, letting M =b,i=1,2, n€N, we have 7} =
(b—a)/(b—c)>1, n€EN.

ASSUMPTION 2.2. Processes M — Z' (i = 1,2, ..., p) are bounded from above, that is,
there is a constant L such that M} — Z < L for all i and all n€N.

THEOREM 2.1. Suppose Assumptions 2.1 and 2.2 are satisfied. For each n€N, the
following conditions are equivalent :
(a) For each € > 0, e~core C;(Z) is nonempty.

(b) For each € > 0, there ezists a (75,75, ...,75) in A, satisfying inequality (1).

P
(7 =L
Furthermore, if one of conditions (a),(b) and (c) is satisfied, a (71,73, ...,75) in A, such

that v; 2 Yn(#1,75, ., 75) — /L is an element of C;(Z) for each n€ Nand every e > 0.

PROOF. By the definition of e-core C%(Z), the implication (a) = (b) is immediate.
(b) = (c). From inequality (1), we have Vo(rf, 75,y Ts) S 14 e(M: — Z:)! for every 1,
so that

Yo S (15,750 0r Tp) <14 am?X(M,i —_ Zfb)‘l.

Letting as ¢ | 0, we have the desired inequality v; < 1.
(c) = (a). By the definition of 4}, there is a (77,75, ...,75) in A, such that

AE AL

7':, Z ’7’":(7-177-27“"%;) - 6/L
Thus since 7% < 1, we have

G:o.(%ia%;’ ’+;) g Z:z. - E(M:z - Z:z)/L g Z’:L - & 1= 1a27""pa

JuX B aX

which implies that (77,73, ...,75) satisfies inequality (1). Next we assume that this pair

(#3735, .-, 73) is not e-weak Pareto optimal at n, that is, there exists a (71,72, s Tp) In Ay

AE AE

satisfying Gi(71, o, ..., Tp) > GE(71, 75, ..., 75) + € for every i. Then we have

N (71, T2y oy Tp) < VL35, 55 s 72) — /L £ (31,75, 75) —€/L, i=1,2,...,p,
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so that
Yo (T, T2y 000y Tp) < Yn(71,72, 00 75) —€/L S 7,
which is contrary to the fact that in general y,(71,72,...,7,) 2 v;. Hence (75,75, ..., 73) is
e-weak Pareto optimal at n, and it is in C5(Z). Therefore e~core C%(Z) is nonempty.
The proof of the second statement is given in that of the implication (c) = (a). O

In the following theorem, we give a characterization of an element in Co%Z).

THEOREM 2.2. Suppose that Assumption 2.1 is satisfied and that v: < 1 for every

n€N. For each n€N, a (1{,75,...,7)) in A, satisfies v} = v, (75, 75, ey Ty) if and only if

Ga(113755 0 7y) 2 (L= )My + 722, = 1,2,.p, (2)

where the equality holds for at least one i. Furthermore, such a (1],75, ..., ) is in C(Z).

PROOF. If v; = yu(7,75,..., 7)), we have

7:; g 7:;.(7-;‘77—;’ -"77_;)) 1= 1’2> =y Dy
where at least one ¢ have equality (as well as in the inequality below), and hence

Conservely, if a (77,75, ..., 7;) satisfies (2), it is clear that 7} = y,(7,73,...,7;). Next, by
argument analogous to the proof of Theorem 2.1 it is easy to see without Assumption 2.2

that the (rf,75,...,75) is in CY(Z). O

3. fundamental lemmas.

In this section we give fundamental results, in order to obtain properties of shadow
(virtural) optimum and to use these results in the last section. We first define shadow
optimum o' for the reward X;(ry,7s,...,7,) as follows:

ab, = esssup Gi(m,Ty,.T,), NEN, i=1,2,...,p.
(71,72,-0yTp)EAR
In multiobjective programming, the shadow optima are also called “ideal solution”.

Now, to obtain constructive property of the shadow optima, we generally consider
an optimal stopping problem so as to maximize the expected reward G,(m,,...,7,) =
E[X(7y,7a, ..., 7p)| Fn] with respect to (ry,72,...,7,) € A,, where X(ny,...,n,) satisfies the
same conditions as X;(ny,...,n,). The optimal value process 3 = (8, )nen is defined by

Bn= esssup Gn(r,79,...,7,), NEN.

(Tl ,Tg,..‘,Tp)eAn
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For n€ N and € 2 0, we say that a pair (rf,75,...,7;) in A, is (&, B)-optimal at n if
Brn S Gu(75,75,...,75) + €.
AsSUMPTION 3.1. For each n € N and every (ny,n2,...,n,) € N? such that min; n; = n,

X(n,...,np) £ X,

A

where

Xn = max X(ny,...,mp).
nj=n,n+1;ming ng=n

LEMMA 3.1. Suppose Assumptions 3.1 is satisfied.

(i) The process B = (B,) satisfies the recursive relation:

B, = max(X,, E[Bns1 | Fanl), n€N. (3)
(ii) B is the smallest supermartingale dominating the process satisfying (3).
(i) limsup, 8, = liminf, X,,.

PROOF. The lemma is easily proved as in the classical optimal stopping problem (cf.
Chow, Robbins and Siegmund [2] or Neveu [8]). O

From this lemma it is easy to see that the process § coincides with an optimal value
process @ = (ﬂAn) in an optimal stopping problem with a reward X, of time n, i. e.

Bn = ess sup E[XT | Fal-

n<rLo0

Hence § = 3 is constructive by the method of the backward induction as in Chow and et.
al. [2].
For each n € Nand ¢ = 0, define stopping times 77(n) = 77(n, 8) by

Tzs(’n’) = lnf{k g n I IBk é n-ﬁi)i]#t X(nla"'7ni—17k)ni+1,""np) +€}
] =%, 2

where inf(¢) = +o0.
LEMMA 3.2. Suppose Assumptions 3.1 is satisfied and let n € Nbe arbitrary.

(i) For each &> 0, the pair (7{(n),75(n),...,7;(n)) is (¢, B)-optimal at n.
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(ii) The stopping time min; 70(n) is a. s. finite, the pair (77(n), 79(n),...,75(n)) is (0, 5)-

optimal at n.

PROOF. When ¢ is positive, it follows from Lemma 3.1 (iii) that the stopping time
min; 7£(n) is a. s. finite. Thus, for ¢ 2 0, it suffices to show that inequality 8, =
Gn(7{,75,...,75) +€ holds for each n € N. From Lemma 3.1 (i) and the optional sampling
theorem, we have 8, = E[/B'rf(n)/\'r;(n)/\.../\T;(n)) | Fn]- Furthermore, since B < X(7$(n),
75(n),..., 75(n),..., 75(n)) + € on {7f(n) = k}, we have the desired inequality. O

4. Scalarization and Pareto optima.

In this section we find Pareto optimal pairs by the method of the well-known scalariza-
tion.

Let S denote the set of vectors A = (A1, Ag,..., ) in RP satisfying A > 0 and 3", A; =1,
and Sy the set of A in S such that A > 0. For given X;(n),n € N?,2 =1,2,...,p, and A in
S, we define sequences of random variables by

X(n; ) = i A X;(n),

=1
and for (11, 72,...,7,) € Ay, let
p .
Gn(T1, T2y oy T3 A) = ZA{G;(T:[,TQ, ey Tp) = E[X (11,79, ..., T3 A)|Ful
=1

Then a maximum value process is defined by

Va(A) = esssup  Gn(m,72,...,7p;A), n€EN.

(T1,724--yTp) EAR

We also define stopping times for the process V() = (V,(A)) as follows:

5(n) =inf{k 2 n| Vi(A) = max  X(ny,...,ni-1, k00,0 np; A) + €}
nj=k,k+1;5%¢

forn€ N and ¢ 2 0. The following theorems are immediate results of Lemmas 3.1 and 3.2.

AsSUMPTION 4.1. For each n€ N and every (n,ng,...,n,) € N? such that min; n; = n
and all: =1,2,...,p, '
Xi(nla”'anp) é X:L’
where _
)N(; = max Xi(ng,y...,mp).

nj=n,n+1;ming ny=n
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Let
X.(A) = max X(na,...,np; A).

nj=n,n+1lming ny=n

Then we easily see that if Assumption 4.1 is satisfied, the relation
X(na,- i A) S Ka(N)

holds.

The following theorems are immediate results of Lemmas 3.1 and 3.2.

THEOREM 4.1. Suppose Assumptions 4.1 is satisfied let A in S be arbitrary.
(i) The process V(X) = (Vo(X)) satisfies the recursive relation:

Va(X) = max(Xu(A), E[Vasz(A) | Ful), n€N. (4)

(ii) V(X) is the smallest supermartingale satisfying (4).

(iii) limsup, V,()) = liminf, X,(}).

THEOREM 4.2. Suppose Assumptions 4.1 is satisfied, let n€ Nand A € S be arbitrary.

(i) For each e > 0, the pair (75(n), 75(n),...,75(n)) is (¢, V(A))-optimal at n.

(i) The stopping time min; 72(n) is a. s. finite, the pair (1P(n),79(n),...,72(n)) is (0, V(X))-

optimal at n.
The general lemma below is a well-known result in multiobjective problem.

LEMMA 4.1. Letn€N, e 2 0 and A € S be arbitrary. If a pair (1§(n),75(n),...,75(n))

in A, satisfies inequality V,(X) S Gn(m§(n),75(n),...,75(n); A) + ¢, then the pair (7§(n),
75(n),...,75(n)) is e~weak Pareto optimal at n. Furthermore when X is in So, the pair

(t§(n), 15(n),..., 75(n)) is e-strong Pareto optimal at n.

PROOF. We suppose that the pair (75(n), 75(n), ..., 7;(n)) is not e-weak Pareto optimal.
-There then exists a pair (11,72,...,7,) in A, such that  G(mi,72,...,7) > Gi(r$(n),
75(n),-.., 75(n)) + ee, that is, Gi (11,725 .-, Tp) > GL(15(n), 5(n), ... ,T5(n)) + € for
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every t = 1,2,...,p. Thus we have

p .
Gu(T1,72y -, T3 A) = Z NGr(T1, 72500, 7p)

=1

> S NG (m), 75 (n),.. i) + ¢

=1

= Ga(ri(n),73(n),..., 75 (n); A) + ¢,

so that V() > Gn(7{(n),75(n),...,75(n); ) + ¢, which is a contradiction. Hence the pair
(t§(n),75(n),...,75(n)) is e-weak Pareto optimal. Similarly, the statement for A > 0 is

proved. O

Theorem 4.2 and Lemma 4.1 immediately imply the following theorem.

THEOREM 4.3. Suppose Assumptions 4.1 is satisfied, let n€ Nand A € S be arbitrary.

(i) For each > 0, the pair (15(n), 75(n),...,75(n)) is e—weak Pareto optimal at n ; if in
addition X is in So then the pair (1{(n),75(n),...,75(n)) is e-strong Pareto optimal
at n.

(i) If the stopping time min; 7(n) is a. s. finite, the pair (r2(n),72(n),. .., 72 (n)) is weak
Pareto optimal at n ; if in addition X is in Sy then the pair (1(n),79(n),.. L, 79(n))

is strong Pareto optimal at n.
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