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Abstract

The results of theoretical investigation of first and second sound in $\mathrm{H}\mathrm{e}\mathrm{I}\mathrm{I}$ are reviewed.
The variety of ”standard” nonlinear phenomena are described such as nonlinear transfor-
mation of wave modes into one another, formation of shock fronts, nonlinear renormaJ-
ization of sound velocity, stability and parametric transformation of nonlinear waves etc.
The effects of $\mathrm{d}\mathrm{a}\mathrm{m}_{\mathrm{I}^{)}\mathrm{g}}\mathrm{i}\mathrm{n}$ and dispersion are studied. The possibility of self-focusing of the
second sound in cubically nonlinear case as well as in the quadratically one is discussed.
We also presented the investigation of stochastic wave fields and acoustic turbulence. In
conclusion some of the open problems and the paths for further development touched
upon are discussed.

1 Equations of hydrodynamics of superfluid Helium
1.1 Two-fluid hydrodynamics.
In this section the hydrodynamics of superfluid Helium was introduced and described. From
point of view of hydrodynamics $\mathrm{H}\mathrm{e}\mathrm{I}\mathrm{I}$ can be imagined as a mix of two liquids (see e.g. ref.
[1] $)$ . One of them is superfluid component which behaves as an ideal fluid with zero viscosity
as well as with zero entropy. Another, normal component behaves as usual viscous fluid.
Hydrodynamics of such system can be formulated in terms of density $\rho$ , entropy $S$ , superfluid
velocity $\mathrm{v}_{s}$ and quantity $\mathrm{j}_{0}$ which is the momentum density in the reference system connected
with the superfluid colnponent motion. The energy density in this system $E_{0}$ has a following
form.

$E=\rho v_{S}^{2}/2+\mathrm{v}_{s}\mathrm{j}_{0}+E_{0}(\rho, S, \mathrm{j}_{0})$ (1)
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The differential of the quantity $E_{0}(\rho, S,\mathrm{j}\mathrm{o})$ is

$dE_{0}=TdS+\mu d\rho+\mathrm{v}_{ns}d\mathrm{j}\mathrm{o}$ (2)

The set of nondissipative equations of motion consists of the following four relations:

$\frac{\partial\rho}{\partial t}+\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{j}=0$ , (3)

$\frac{\partial j_{i}}{\partial d}+\frac{\partial\Pi_{ik}}{\partial x_{k}}=0$, (4)

$\frac{\partial S}{\partial t}+\mathrm{d}\mathrm{i}\mathrm{v}S\mathrm{v}_{n}=0$ , (5)

$\frac{\partial_{\mathrm{V}_{S}}}{\partial t}+\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}(\mu+\frac{\mathrm{v}_{s}^{2}}{2})=0$ . (6)

They represent the conservation low for density, for relative momenta and for entropy, where is
$\mathrm{t}\mathrm{a}\mathrm{l}<\mathrm{i}\mathrm{n}\mathrm{g}$ into account that entropy is transferred only with normal component. The last equation
for superfluid velocity $\mathrm{v}_{S}$ reflects the fact that driving force for superfluid component is a
chemical potential $\mu(\rho, S_{\mathrm{V}_{n}},-\mathrm{v}_{s})$

The full momenta $\mathrm{j}$ is

$\mathrm{j}=\rho_{s^{\mathrm{V}_{S}}}+\rho_{n^{\mathrm{V}}n}$ (7)

The momentum flux density is defined as follows

$\prod_{ik}$ $=$ $\rho_{n^{\mathrm{V}_{ni}\mathrm{V}_{n}}}k$ $+$ $\rho_{s^{\mathrm{V}}Si}\mathrm{V}_{S}k$ $+p\delta_{ik}$ , $(8)$

where $\mathrm{p}$ is the pressure.
The relations written above describe hydrodynamics of superfluid helium and accordingly can
be regarded as a base for study of problems of linear and nonlinear acoustics.

1.2 The Hamiltonian form of the equations of motion.
An alternative to the Relations (3) $-(6)$ is the representation of the equations of motion in
so-called Hamiltonian $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{l}\mathrm{n}$. The method of of the Hamiltonian formalism is very effective for
studying nonlinear waves (see e.g. Refs [2] and [3]). For case of $\mathrm{H}\mathrm{e}\mathrm{I}\mathrm{I}$ the Hamiltonian formalism
was elaborated in work [4]. There are two $\mathrm{p}\mathrm{a}$

,irs of callonically conjugate va,riables $(\rho, \alpha),$ $(S, \beta)$

(in potential flow) which $\mathrm{a}\mathrm{l}\cdot \mathrm{e}$ related to earlier introduced variables as follows.

$\mathrm{j}_{0}=s_{\mathrm{g}\mathrm{r}\mathrm{a}}\mathrm{d}\beta$ , $\mathrm{v}_{S}=$ gra,d $\alpha$ . (9)
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In new variables the equation of motion of $\mathrm{H}\mathrm{e}\mathrm{I}\mathrm{I}$ acquire the canonical form

$\dot{\rho}=\frac{\delta H}{\delta\alpha}$ , $\dot{\alpha}=-\frac{\delta If}{\delta\rho}$ ; (10)

$\dot{S}=\frac{\delta H}{\delta\beta}$ , $\dot{\beta}=-\frac{\delta H}{\delta S}$ ; (11)

where the $\mathrm{H}\mathrm{a}\mathrm{l}\mathrm{n}\mathrm{i}\mathrm{l}\mathrm{t}_{\mathrm{o}\mathrm{n}}\mathrm{i}\mathrm{a}\mathrm{n}H$ is the energy $E$ (l)expressed in canonical variables.
$\mathrm{F}\mathrm{u}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\nu_{j}\mathrm{o}\mathrm{r}\mathrm{e}$

,
it is possible to introduce other two other pairs, so called normal coordinates

$a_{\mathrm{k}_{\mathrm{i}}}$
, mbox $($

$\nu$ $=$ $\pm 1,2)$ which are Fourier components of some linear combination of initial variables.
Equation of lnotion have a following form:

$i.a_{\mathrm{k}}^{\nu}.=$ sign $\frac{\delta H}{\delta a_{-\mathrm{k}}^{-\nu}}$ . (12)

The Hamiltonian $H$ is a series in integral powers of the variables $a_{\mathrm{k}_{\mathrm{i}}}^{\nu_{j}}$ . It has the following $\mathrm{f}\mathrm{o}\mathrm{r}\ln$

up to third order inclusively:

$H= \int\omega_{\mathrm{k}}^{1}a_{\mathrm{k}\mathrm{k}}^{1}a_{-}^{-}1d^{3}\mathrm{k}+\int\omega_{\mathrm{k}\mathrm{k}\mathrm{k}}^{2}aa_{-}^{-2}d23\mathrm{k}+\int V_{\mathrm{k}_{1}\mathrm{k}}^{\nu_{1}}\nu_{2}21\mathcal{U}_{3a}-\nu_{1}a\mathrm{k}_{3}\mathrm{k}_{1}\mathrm{k}_{2}a^{-}-\nu 2\nu 3d^{3}\mathrm{k}\mathrm{k}_{3}1d^{3}\mathrm{k}2d^{3}\mathrm{k}3$. (13)

It can be seen from relations (12) $-(13)$ that normal coordinates in linear case corresponds
to $\mathrm{o}\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{I}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ of medium (sounds )and that there are two types of independent sound waves,
so called first and second sounds. We describe their physical meaning later in next section. In
nonlinear case these sounds interact due to presence of terms of third (and higher) order in
Hamiltonian $H$ .

2 One-dimensional nonlinear waves
2.1 Reimann invariants.
In this section we will study the laws of propagation of one-dimensional (along axis $x$ ) nonlinear
sound waves of the first and second sounds. Let us introduce the following variables $\varphi_{1}=\rho’$

-perturba,tion of density, $\varphi_{2}=v- 111\mathrm{e}\mathrm{a}\mathrm{n}-_{1}\mathrm{n}\mathrm{a}S\mathrm{S}$ velocity, $\varphi_{3}=S’$ -perturbation of entropy and
$\varphi_{4}=w$ -relative velocity. $\mathrm{U}_{\mathrm{I}}$) to terlns of second order in these quantities the set of equation
can be written as follows:

$\frac{\partial\varphi_{i}}{\partial t_{J}}+\sum_{j}A_{ij(\varphi_{i})}\frac{\partial\varphi_{j}}{\partial x}=0$ . $(i,j=1,2,3,4)$ . (14)

The dependence of the matrix elements $A_{ij}(\varphi_{i})$ is no stronger than linear (see [5]).
In [5] there was shown that under some supposition for waves travelling in one direction it was
possible to introduce Reimann inva,riants $I_{1}$ and $I_{3}$ which depend only on variables $\varphi_{1}=\rho’$ and
$\varphi_{3}=S$ ’
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$I_{1}=\rho’+\alpha_{1}\rho^{\prime 2}+\alpha_{2}\sigma^{\prime 2}$ , (15)

$I_{3}=\sigma’+\beta_{1}\sigma^{\prime 2}+\beta_{2}\rho^{\prime_{\sigma};}$ , (16)

and satisfy to the following equations:

$\frac{\partial I_{1}}{\partial t}+\xi^{1}(\varphi_{i})\frac{\partial I_{1}}{\partial x}=0$ , (17)

$\frac{\partial I_{3}}{\partial t}+\xi^{3}(\varphi_{i})\frac{\partial I_{3}}{\partial x}=0$ . (18)

Characteristics $\xi^{1}(\varphi_{i})$ and $\xi^{3}(\varphi_{i})$ correspond nonlinear velocities of the first and second sounds.
It can be seen from Eqs. (17) $-(18)$ that Reimann invariants corresponds to the waves travelling
along the axis $\mathrm{x}$ . In linear case the first invariant (first sound) describes to oscillations of density
(and pressure) and mean-flow velocity and, therefore, represents usual sound. Conversely, the
second $\mathrm{R}\mathrm{e}\mathrm{i}_{1}\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{n}$ invariants leads to perturbations of entropy (and temperature) and counterflow
velocity. Existence of waves of temperature is the unique phenomenon specific for superfluid
helium. It also can be seen from Rels. (15) $-(18)$ that in linear case waves of pressure and
telllperature are independent whereas in nonlinear case there is a coupling between them. In
particular heating the wall one will detect both waves, the main pulse of the temperature
disturbance and solne ”precursor” which propagates with the much larger speed of first sound
and which transfers perturbations of pressure. Details of this effects as well as $\mathrm{e}\mathrm{x}\mathrm{a}$,ct quantitative
results are described in papers [3], [5].

2.2 Evolution of intense waves.

Let us consider in more details nonlinear evolution of the second sound wave. In order to
do it we express the second Reilnann invariant via normal velocity $v_{n}$ , and take into account
dissipa,tion as well as dispersion (near $T_{\lambda}$ ). The last step can be perforlned using method of
quasisimple waves (see e.g. [3], [6]). After according calculations we arrive at the following
equation of evolution of the normal velocity

$\frac{\partial v_{n}}{\partial t}+[c_{2}+\alpha(T)v_{n}]\frac{\partial v_{n}}{\partial x}=\mu_{2^{\frac{\partial^{2}v_{n}}{\partial x^{2}}}}+\mu^{3}\frac{\partial^{3}v_{n}}{\partial x^{3}}$. (19)

Relations of such kind is frequently encountered in the theory of nonlinear waves and is called
$\mathrm{I}<_{\mathrm{o}\mathrm{r}}\mathrm{t}\mathrm{W}\mathrm{e}\mathrm{i}\mathrm{g}$-de Vries-Burgers equation $(\mathrm{K}\mathrm{d}\mathrm{V}\mathrm{B})$ .
Neglecting both nonlinear and dissipative terms one concludes that Rel. (??) describes usual
wave of unchanged profile. However nonlinear effects lead to deformation of the wave profile. In
$\mathrm{p}\mathrm{a}$

,rticular $\mathrm{t}\mathrm{e}\mathrm{r}\ln\alpha(T)v]n\frac{\partial v_{n}}{\iota 9x}$ is responsible for steepening of shape of the wave pulse. Coefficient
$\alpha(T)$ is some conlplicated function of the temperature, it can be both positive and negative and
it is equal to zero at tenlperature about 1.885 K.. Therefore when $\alpha(T)>0$ the shock front
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forms on the leading part of the pulse. In regions where $\alpha(T)<0$ the steepening and formation
of shock front occurs on the back edge of the wave profile. This very interesting phenomenon
was observed in various experinlents. At the telnperature 1.885 $\mathrm{I}\langle$ where $\alpha(T)$ $=0$ there is
no influence of second order nonlinearity and evolution of wave is determined by next cubic
nonlinearity.

2.3 Cubically nonlinear effects.
A cubically nonlinear medium has one remarkable property. It can support steady-state (e.g.
,the profile does not change) monochromatic wave. This problem was studied in work [???].
According this work let us introduce the colnplex ellvelope of the wave $\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{l}<\mathrm{e}\mathrm{t}\Psi$ , which is
defined via norlnaJ coordinates $a_{\mathrm{k}}^{\pm 2}$

$\Psi(\mathrm{r}, t)=\frac{1}{(2\pi)^{3}/2}/a_{\mathrm{k}}^{\pm 2}\exp i(\mathrm{k}-\mathrm{k}_{0})\mathrm{r}d^{3}\mathrm{k}$ . (20)

Equation for quantity $\Psi$ can be derived from Hamiltonian equation (12) $-(13)$ . The Hamil-
tonian $H$ wa,s found by simply going through all contribution to the energy in given approxi-
mation. Using $H$ obtained in this way we arrived at the following equation:

$i \frac{\partial\Psi}{\partial t}=\omega_{\mathrm{k}_{0}}^{2}\Psi+V|\Psi|^{2}\Psi$. (21)

It is famous nonlinear Shredinger equation. It has the uniform obvious $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\ln$ solution as
follows:

$\Psi(t)=\Psi_{0}(t)\exp i\Omega(\mathrm{k}_{0,0}\Psi)t$ (22)

which corresponds to monochromatic wave. The frequency of this wave depends however both
on wave vector $\mathrm{k}$ and on the amplitude $\Psi_{0}$ (the nonlinear dispersion law). Numerical analysis
shows that nonlinear correction to the second velocity sound is equal to

$\delta c_{2}=-1.09\frac{k_{0}}{\rho}|\Psi|^{2}$ (23)

Thus the nonlinear wave moves more slowly than linear wave. It is important to note $\mathrm{t}1_{1}\mathrm{a}\mathrm{t}$ main
contribution to this effect appeared due to interaction (Doppler shift) of initial second sound
with first sound generated in the system (see section 2.1).
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3 Multi-dimensional wave packets.

We will describe now behavior of weakly non-one-dimensional packets of nonlinear waves of
second sound. For waves with all infinitesimal amplitude taking the transverse nonuniformity
into account results in diffraction phenomena. In the case of finite amplitudes a number of
fundamentally new effects, connected with the combined action of nonlinear and diffraction
terlns in the equations of motion,can arise.
We begin with cubically nonlinear lnedium described in previous section. It was shown in
work [7] that conlplex envelope nonlinear $\Psi(\mathrm{r}, t)$ of monochromatic waves, weakly modulated
in transverse direction, evolve obeying to following equation (in the reference frame moving
with second sound velocity $c_{2}$ )

$2ik_{0} \frac{\partial\Psi}{\partial x}-\triangle_{1}\Psi=\omega_{\mathrm{k}_{0}}^{2}\Psi+\frac{2k_{0}}{c_{2}}V|\Psi|^{2}\Psi$ (24)

Analyses of this equation $(\mathrm{s}\mathrm{e}\mathrm{e}[7])$ shows that waves have a tendency self-focusing. The physical
meaning of this effect is following. As it was shown in Sec 2.3 the term in r.ll.s. is positive
whalt means that the velocity of propagation of wave decreases with the alnplitude. As a result
at the periphery of the wave packet (far from axis $x$ ) where the amplitude is smaller, the
velocity of the wave is higher than on the axis of the beam. Thus the wavefront bends and
focusing of the packet starts. As a result the amplitude on the axis increases, which results in
an greater difference between the velocity of propagation of the peripheral and central parts.
This intensifies the focusing effects even more. The diffraction term $\triangle\perp\Psi$ in Eq. (24) $\mathrm{r}\mathrm{e}\mathrm{S}\mathrm{u}\mathrm{l}\mathrm{t}_{\mathrm{S}}$

in spreading of the packet in the transverse direction. For this reason, to observe self-focusing
the energy flux must exceed some threshold value $I_{\mathrm{c}r}$ , which is about 0.6 $10^{7}\nu^{-2}w$ , where $\nu$ is
the frequency.
Thus we showed that nonlinear $\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{c}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{C}}$ waves of second sound in cubically nonlinear
niedium are undergoing to self-focusing effects, and ma.in reason of that is that velocity of
propagation of nonlinear wave is slnaller than of a linear one.
Some allaloguos effects call take place in quadratically nonlinear medium where $\alpha(T)$ is negative
what corresponds to slowing of nonlinear wave. The evolution equation for normal velocity $v_{n}$

(in $\mathrm{t}1_{1}\mathrm{e}$ reference frame lnoving with second sound velocity $c_{2}$ ) can be derived from $\mathrm{K}\mathrm{d}\mathrm{V}\mathrm{B}$

equation (19) (see Ref. [3] and [6]).

$\frac{\partial}{\partial x}(\frac{}\partial v_{n}}{\partial t_{\text{ノ}}+\alpha(T)v_{n}\frac{\partial v_{n}}{\partial x}-\mu_{2}\frac{\partial^{2}v_{n}}{\partial x^{2}})=\frac{c_{2}}{2}\triangle_{\perp}v_{n}$ . (25)

Compared with the nonlinear $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}‘ \mathrm{b}_{0}1\mathrm{i}\mathrm{C}$ equation (24) Eq. (25) has not been studied much.
One $\mathrm{r}\mathrm{e}\mathrm{a}$,son for this is that there are no steady waves with constant profile (see Sec 2.2). There
are,however, a nunlber of nunlerical $\mathrm{S}\mathrm{i}\mathrm{l}\mathrm{n}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\dot{\mathrm{S}}$ of Eq. (25) (see e.g. book [6]), which pointed
out to self-focusing effects, at least, before formation of shock front. However after forming
shock front the situation is extremely involved and behavior of wave is not studied.
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4 Stability of nonlinear waves.

4.1 Nonlinear transformation of first sound into second sound.
The study of of stability of solutions is an ilnportant part of the theory of nonlinear waves.4 First
of all, this $\mathrm{p}\mathrm{e}\mathrm{l}\cdot \mathrm{m}\mathrm{i}\mathrm{t}\mathrm{s}$ deterlnination the region of values of the parameters for which the solution
found is realized. Second, the possible instability of the waves is related with the nonlinear
character of the equations of motion.
There is one other aspect to the question of stability of the waves. Suppose that a wave
of first sound is excited in helium. Suppose further that small disturbances, associated with
the second-sound mode, are unstable in the presence of this this first sound. This effect can
be interpreted as the generation of second sound by first sound (see [4]). Authors of [4]
studied stability of monochromatic wave of first sound $a_{\mathrm{k}_{1}}^{1}$ with respect two following nonlinear
processes, $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{p}_{0}\mathrm{S}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ process and Cherenkov process.

$a_{\mathrm{k}_{1}}^{1}$ $\Rightarrow$ $a_{\mathrm{k}_{2}}^{2}+$ (26)

$a_{\mathrm{k}\mathrm{s}^{a}\mathrm{k}_{1}}^{21}$ $\Rightarrow$ $a_{\mathrm{k}_{2}}^{1}+a_{\mathrm{k}_{3}}^{2}$ (27)

It is well known from general results (see Ref. [2]), that instability develops under conditions
of resonance, which e.g. for decomposition processes have a following form:

$\omega_{\mathrm{k}_{1}}^{1}$ $=$ $\omega_{\mathrm{k}_{2}}^{2}$ $+\omega_{\mathrm{k}_{3}}^{2}$ (28)

$\mathrm{k}_{1}$ $=$ $\mathrm{k}_{2}+\mathrm{k}_{3}$ . (29)

Studying of these conditions allowed the authors to draw the following conclusion. $\mathrm{A}1_{1\mathrm{n}\mathrm{o}\mathrm{S}}\mathrm{t}$ for
all temperatures the Cherenkov process dolninates, e.i.the initial wave should decay into first
sound and second sound, which propagates in opposite (with respect to initial wave) direction.
Authors also calculated the critical amplitudes of this process.

4.2 Stability of a pressure shock waves.
As it was already mentioned, in a quadratically nonlinear $\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{U}\ln$ any wave forms a shock front.
Therefore it is of great interest to study the condition of stability of shock front with respect
to generation of the first and second sound as well as to arbitrary distortion of an initially
plain shock front. This problem was studied in paper [8]. The problem was solved based on
the Hamiltonian equations of motion in the class of generalized function. In an idealized shock
wave-a step lnoving from left to right-the hydrodynamics, for instance mean-flow velocity $v$ ,
variables are proportional to a unit step function
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$v\propto\theta(x-Ut)$ . (30)

Furthermore it is known that unit step function has a following Fourier representation:

$F \theta(x-Ut)\propto\frac{\exp(-ik_{x}.Ut)}{k_{x}+i0}$

.

(31)

Where the $\mathrm{t}\mathrm{e}\mathrm{r}\ln+i0$ gives a rule for circumscribing the pole. Equations for small pertur-
bation $b_{\mathrm{k}_{1}}$ of any of listed nature in the presence of shock wave can be written down in $\Gamma^{\dashv_{\mathrm{o}\mathrm{u}\mathrm{r}}}\mathrm{i}\mathrm{e}\mathrm{r}$

space as follows (see Ref. [8]):

$\frac{\partial b_{\mathrm{k}_{1}}}{\partial t}+i(\omega_{\mathrm{k}_{1}}^{\nu}-k_{x}U)b_{\mathrm{k}}+\frac{1}{\pi i}\int\frac{V_{\mathrm{k}_{1},\mathrm{k}_{2}}^{\nu}b\mathrm{k}_{1}d3\mathrm{k}_{1}}{k_{2x}-k_{x}+i0}=0$. (32)

Here vertices $V_{\mathrm{k}_{1}^{\mathcal{U}}}$ depend on what concrete type of perturbations we study. They are rational
functions of variables $\mathrm{k}_{1},$ $\mathrm{k}_{2}$ . This circumstallce allows to to reduce the solving of Eq. (32) to the
reconstruction of a piecewise- analytical function (of the complex variable $k_{x}$ . The calculations
performed in Ref. [8] lead to the following results. Small perturbations of both first and second
sound are neutral i.e. $\mathrm{a}\mathrm{n}\mathrm{d}$

, corresponding solution just describes how they go through shock
front. As for small distortion of shock front, they decay exponentially with decrement $\triangle vk_{\perp}$ ,
where $\triangle v$ is $\mathrm{a}\mathrm{n}\mathrm{l}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}_{\mathrm{U}}\mathrm{d}\mathrm{e}$ of $\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{C}\mathrm{l}<$ wave and $k_{\perp}$ is inverse size of ”ripple” on the shock front
surface.

5 Stochastical nonlinear wave processes.
The last section of the paper is devoted to stochastical wave- a set of wave with chaotic phases-
which can appear in system due to various nonlinear processes of instabilities or due to random
pumping of wave energy into the volulne of the liquid.
suppose tllat we have some source of wave energy that generates harmonics with a characteristic
$\mathrm{w}\mathrm{a}$,ve number of the order of $k_{+}$ , which is supposed to be (in order of magnitude) the inverse
size of the $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{n},$ $k_{+}\sim L^{-1}$ . As a result of nonlinear processes halmonics with higher values
of $k$ , which , in their turn, generate still higher harmonics, appear in the system. For very
large values of $k$ , of the order of $k_{-}$ , viscous terms come into play in the equations of motion,
and waves with lnolnenta $k>k_{-}$ . decay rapidly. $\mathrm{U}\mathrm{l}\mathrm{t}\mathrm{i}_{\ln}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}$ some distribution of the wave,
which is characterized by the transfer of energy from large- scale scale motion to small-scale
motion, is est.ablished in k- space. This picture is typical for turbulent phenomena, and since
we are talking about sound waves it is called acoustical turbulence.
Following paper [9], in order to describe quantitatively acoustical turbulence let us introduce
the Fourier transforms of pair correlation function of normal coordinates $a_{\mathrm{k}}^{\nu}$ -so called spectra
$n_{\mathrm{k}}^{\nu}$ . They are defined as follows:

$\langle a_{\mathrm{k}_{1}}^{\nu}a_{\mathrm{k}2}^{-\nu}\rangle$ $=$ $n_{\mathrm{k}}^{\nu}\delta(\mathrm{k}_{1} +\mathrm{k}_{2})$ . (33)
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As it was shown in [9] , under supposition that nonlinearity is not too strong, the dynamics
of spectra obeys to set of kinetic equations in $k$-space. Thus the problem is reduced to seeking
for the solution of the kinetic equation which satisfies to constant flux of energy in $k$-space. If
we $\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{U}\mathrm{l}\mathrm{l}\mathrm{l}\mathrm{e}$ that $k_{+}$ is very small, whereas $k$-very large, then in the range, which is far both
frolll $k_{+}$ and fiom $k_{-}$ (so called inertial interval) there are no no characteristic dimension for
$k$ . Taking into account that the coupling constants $V_{\mathrm{k}_{1}\mathrm{k}2\mathrm{k}}^{\nu_{1}\nu_{2}}1\nu_{3}3$ (see Sec. 1.2) are homogeneous
functions of its argulllents $\mathrm{k}_{i}$ we are able to assulne that solution should be scaling invariant.

$n_{\mathrm{k}}^{1}=$ A $k^{s}$ $n_{\mathrm{k}}^{2}=Bk^{s}$ (34)

Further analyses, which supposed some transformation of the kinetic equations leads to re-
lllarkable result that quantity $s$ depends only on fundamental properties of the system such
as $\mathrm{d}\mathrm{i}_{\ln}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}$ of space, dispersion laws of first and second sounds and power of uniformity of
coupling constants and equal to

$s$ $=$ $-9/2$ (35)

It is interesting to note that in spite of general nonequilibrium the first and second sound
lnode are in $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}_{\mathrm{U}\mathrm{l}}\mathrm{n}$, there is no flux of energy from the one lnode to the another one. One
lnore interesting result is that nlost part of energy is stored in the second ”soft” wave mode.
In paper [9] it was also shown that $\mathrm{H}\mathrm{e}\mathrm{I}\mathrm{I}$ , in which the fields of chaotic waves are developed,
possesses unique acoustical properties. In particular there appears additional dissipation of the
both second and first sound as well as dispersion of the sounds velocities.
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