<table>
<thead>
<tr>
<th>Title</th>
<th>数理解析研究所講究録 (1996), 950: 153-159</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nagaya, Takashi; Sakai, Masahiko; Toyama, Yoshihito</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1996), 950: 153-159</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60326</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
NVNF-sequentiality of Left-linear Term Rewriting Systems

Takashi Nagaya
(長谷 崇)
Masahiko Sakai
(酒井 正彦)
Yoshihito Toyama
(外山 芳人)
School of Information Science, JAIST
Tatsunokuchi, Ishikawa, 923-12, Japan
e-mail: {nagaya, sakai, toyama}@jaist.ac.jp

Abstract

This paper introduces NVNF-sequentiality which is an extension of NV-sequentiality defined by Oyamaguchi. It is shown that the class of NVNF-sequential systems properly includes the class of NV-sequential systems, and the indices with respect to NVNF-sequentiality are computed for a given term when a term rewriting system is NVNF-sequential. NVNF-sequentiality is decidable, and the index reduction is normalizing strategy for NVNF-sequential orthogonal term rewriting systems.

1 Introduction

Term rewriting systems can be regarded as a model for computation in which terms are reduced using a set of directed equations, called rewrite rules. Term rewriting systems play an important role in various fields of computer science such as abstract data type specifications, implementations of functional programming languages and automated deduction.

In a non-terminating term rewriting system, there are possibilities that a term having normal forms has infinite reduction sequences starting with it. We require some strategies telling us which redex should be contracted in order to get the desired result. Therefore, it is important to have a normalizing strategy which guarantees to find the normal form of terms whenever their normal forms exist. Huet and Lévy [3] showed that the needed reduction strategy is normalizing for every orthogonal (i.e., left-linear and non-overlapping) term rewriting system. The needed reduction strategy always rewrites one of needed redexes which have to be rewritten in order to reach a normal form. Unfortunately, it is undecidable in general whether a redex is needed or not. However, they showed that for strong sequential orthogonal term rewriting systems, at least one of the needed redexes in a term not in normal form can be efficiently computed. The work of Huet and Lévy was extended to several kinds of systems. Toyama [9] extended the notion of strong sequentiality to left-linear term rewriting systems. Decidability of strong sequentiality was showed for left-linear systems by Jouannaud and Sadfi [4]. Oyamaguchi [7] introduced NV-sequentiality which is also decidable.

In this paper, we introduce an extension of NV-sequentiality. This sequentiality is called NVNF-sequentiality [6]. Like NV-sequentiality, NVNF-sequentiality is based on the analysis of left-hand sides and the non-variable parts of the right-hand side of rewrite rules. However, the reachability to the normal form is considered in NVNF-sequentiality. We first show that the class of NVNF-sequential systems properly includes the class of NV-sequential systems. Next we prove that, for a given term t, it is decidable whether an occurrence u in t is an index with respect to NVNF-sequentiality. NVNF-sequentiality is decidable, and the index reduction is normalizing strategy for NVNF-sequential orthogonal term rewriting systems.
2 Definition

We mainly follow the notation of [3, 5]. Let \mathcal{F} be a finite set of function symbols and let \mathcal{V} be a countably infinite set of variables where $\mathcal{F} \cap \mathcal{V} = \emptyset$. The set of all terms built from \mathcal{F} and \mathcal{V} is denoted by $T(\mathcal{F}, \mathcal{V})$. The set $T(\mathcal{F}, \mathcal{V})$ is sometimes denoted by T. Terms not containing variables are called ground terms. Identity of terms is denoted by \equiv.

The set of occurrences in a term t is denoted by $O(t)$, t/u is the subterm of t at u, $t[u \leftarrow s]$ is the term obtained by replacing t/u with s in t. If s is a subterm of t then we write $s \subseteq t$. Occurrences are partially ordered by the prefix ordering \leq, i.e., $u \leq v$ if there exists w such that $u.w = v$. In this case we define v/u as w. If $u \not\leq v$ and $u \not\subseteq v$ then we say that u and v are disjoint, and write $u \perp v$. If u_1, \ldots, u_n are pairwise disjoint, we use $t[u_1 \leftarrow s_1 \mid 1 \leq i \leq n]$ to denote $t[u_1 \leftarrow s_1] \cdots [u_n \leftarrow s_n]$.

A substitution θ is a mapping from \mathcal{V} into $T(\mathcal{F}, \mathcal{V})$. Substitutions are extended into homomorphisms from $T(\mathcal{F}, \mathcal{V})$ into $T(\mathcal{F}, \mathcal{V})$. We write $t\theta$ instead of $t(\theta(t))$.

A term rewriting system is a pair $(\mathcal{F}, \mathcal{R})$ consisting of a set \mathcal{F} of function symbols and a finite set \mathcal{R} of rewrite rules. A rewrite rule is a pair (l, r) of terms such that $l \not\in \mathcal{V}$ and any variable in r also occurs in l. We write $l \rightarrow r$ for (l, r). An instance of the left-hand side of a rewrite rule is a redex. The rewrite rules of a term rewriting system $(\mathcal{F}, \mathcal{R})$ define a reduction relation $\rightarrow_{\mathcal{R}}$ on $T(\mathcal{F}, \mathcal{V})$ as follows: $t \rightarrow_{\mathcal{R}} s$ if there exists a rewrite rule $l \rightarrow r \in \mathcal{R}$, an occurrence $u \in O(t)$ and a substitution θ such that $t/u \equiv l\theta$ and $s \equiv t[u \leftarrow r\theta]$. When we want to specify the redex occurrence u of t in this reduction, we write $t \overset{u}{\rightarrow} s$. The transitive-reflexive closure of $\rightarrow_{\mathcal{R}}$ is denoted by $\rightarrow_{\mathcal{R}}^{*}$, $\rightarrow_{\mathcal{R}}^{+}$ is the transitive closure of $\rightarrow_{\mathcal{R}}$ and $\rightarrow_{\mathcal{R}}$ is the reflexive closure of $\rightarrow_{\mathcal{R}}$. A formal normal is a term without redexes. We say t has a normal form if $t \rightarrow_{\mathcal{R}}^{+} s$ for some normal form s. NF$_{\mathcal{R}}$ is the set of normal forms of a term rewriting system \mathcal{R}. When no confusion can arise, we omit the subscript \mathcal{R}. A term rewriting system \mathcal{R} is left-linear if for any $l \rightarrow r \in \mathcal{R}$, every variable in l occurs only once. \mathcal{R} is non-overlapping if for any $l \rightarrow r$, $l' \rightarrow r' \in \mathcal{R}$ and $u \in O(l)$ such that $l/u \not\in \mathcal{V}$, there are no substitutions θ, θ' such that $(l/u)\theta \equiv l'\theta'$, except in the case where $l \rightarrow r$, $l' \rightarrow r'$ are the same rewrite rule and $u = \varepsilon$. \mathcal{R} is orthogonal if \mathcal{R} is left-linear and non-overlapping. In this paper we restrict ourselves to the class of left-linear term rewriting systems.

3 NVNF-sequentiality

In this section we will explain NVNF-sequentiality. In order to define this concept, we need some preliminaries.

Let Ω be a new constant symbol representing an unknown part of a term. The set $T(\mathcal{F} \cup \{\Omega\}, \mathcal{V})$ is abbreviated to T_{Ω}. Elements of T_{Ω} are called Ω-terms. An Ω-normal form is an Ω-term without redexes, and the set of all Ω-normal forms is denoted by NF$_{\Omega}$. Only terms containing neither redexes nor Ω's are called normal forms. t_{Ω} denotes the Ω-term obtained from t by replacing all variables in t by Ω, and $t_{\overline{\Omega}}$ denotes the term obtained from t by replacing all Ω by ε. $O_{\Omega}(t)$ denotes the set of Ω-occurrences of t, i.e., $O_{\Omega}(t) = \{u \in O(t) \mid t/u \equiv \Omega\}$. The prefix ordering \leq on T_{Ω} is defined as follows:

(i) $\Omega \leq t$ for all $t \in T_{\Omega}$,
(ii) $f(s_1, \ldots, s_n) \leq f(t_1, \ldots, t_n)$ if $s_i \leq t_i$ $(1 \leq i \leq n)$.

Two Ω-terms t and s are compatible, written $t \uparrow s$, if there exists an Ω-term r such that $t \leq r$ and $s \leq r$. In this case the least upper bound of t and s is denoted by $t \cup s$.
Definition 3.1 ([3]) Let P be a predicate on T_{Ω}. An Ω-occurrence u of t is an index with respect to P if for all Ω-term s, $s \geq t$ and $P(s)$ imply $s/u \not\equiv \Omega$.

The set of indices of t with respect to P is denoted by $I_{P}(t)$.

Definition 3.2 ([7])

1. The reduction relation \rightarrow_{nv} on T_{Ω} is defined as follows: $t \rightarrow_{nv} s$ iff there exists $l \rightarrow r \in \mathcal{R}$, $u \in O(t)$ such that $t/u \geq l_{\Omega}$ and $s \equiv [t[u \leftarrow s']]$ for some $s' \geq r_{\Omega}$.

2. The predicate nvf on T_{Ω} is defined as follows: $nvf(t)$ holds iff $t \rightarrow_{nv} s$ for some s in normal form.

Definition 3.3 A left-linear term rewriting system is NVNF-sequential if every Ω-normal form containing at least one occurrence of Ω has an index with respect to nvf.

Oyamaguchi [7] introduced NV-sequentiality, by using the predicate term: term(t) holds iff $t \rightarrow_{nv}^{*} s$ for some $s \in T$. Note that s may be not in normal form.

Example 3.4 Let

\[\mathcal{R} = \begin{cases}
 f(a,b,x) &\rightarrow a \\
 f(b,x,a) &\rightarrow b \\
 f(x,a,b) &\rightarrow c \\
 c &\rightarrow c.
\end{cases} \]

Consider the Ω-term $t \equiv f(\Omega,\Omega,\Omega)$. $I_{nvf}(t) = \{1\}$ because there does not exist an Ω-term s such that $s \geq t$, $s/1 \equiv \Omega$ and $s \rightarrow_{nv}^{*} s'$ for some normal form s'. Note that \mathcal{R} is not NV-sequential since $f(\Omega,\Omega,\Omega)$ has no indices with respect to the predicate term.

We now show that \mathcal{R} in Example 3.4 is NVNF-sequential system. For this purpose we need the following lemma.

Lemma 3.5 Let $t \in T_{\Omega}$. If $u \in I_{nvf}(t)$, $t \leq s$ and $s/u \equiv \Omega$ then $u \in I_{nvf}(s)$.

Proof. If $u \not\in I_{nvf}(s)$ then there exists $s' \geq s$ such that $s'/u \equiv \Omega$ and $nvf(s')$ is true. Since $s' \geq t$, $u \not\in I_{nvf}(t)$.

Lemma 3.6 \mathcal{R} of Example 3.4 is NVNF-sequential system.

Proof. We first prove the following claim: If $u \in I_{nvf}(t)$ and $v \in I_{nvf}(s)$ then $u.v \in I_{nvf}(t[u \leftarrow s])$.

Proof of the claim. Suppose $u.v \not\in I_{nvf}(t[u \leftarrow s])$. Then there exists $t' \geq t[u \leftarrow s]$ such that $t'/u.v \equiv \Omega$ and $nvf(t')$ is true. Hence there exists a reduction

\[t' \equiv t_{0} \rightarrow_{nv}^{u_{0}} t_{1} \rightarrow_{nv}^{u_{1}} \cdots \rightarrow_{nv}^{u_{n-1}} t_{n} \in \text{NF}. \]

We distinguish two cases:

1. $u_{i} \not\not\equiv u$ for all i ($0 \leq i \leq n - 1$). Because there exists no u_{i} such that $u_{i} \not\equiv u$, we have $t'/u \rightarrow_{nv}^{*} t_{n}/u \in \text{NF}$. Hence $nvf(t'/u)$ is true. Clearly $t'/u \geq s$ and $(t'/u)/v \equiv \Omega$. This contradicts the assumption $v \in I_{nvf}(s)$.

(2) \(u_i < u \) for some \(i \). Let \(j \) be the smallest number satisfying \(u_j < v \). Note that \(t'/u \not\rightarrow_{nv}^{*} t_j/u \). \(t_j/u \) is a redex but \(t_j/u \neq c \). Moreover \(t_j \neq a \) and \(t_j \neq b \) because \(t'/u \geq s \), \(t'/u.v \equiv \Omega \) and \(u \in I_{nvnf}(s) \). Thus \(t_j[u \leftarrow \Omega] \not\rightarrow_{nv}^{*} t_{j+1} \). We can obtain the following reduction: \(t'[u \leftarrow \Omega] \not\rightarrow_{nv}^{*} t_j[u \leftarrow \Omega] \not\rightarrow_{nv}^{*} t_{j+1} \not\rightarrow_{nv}^{*} t_n \). Hence \(t'[u \leftarrow \Omega] \geq t \), \(nvnf(t'[u \leftarrow \Omega]) \) is true. But this is contradictory to \(u \in I_{nvnf}(t) \).

Therefore the claim follows.

Let \(t \) be an \(\Omega \)-normal form containing at least one occurrence of \(\Omega \). We prove, by induction on the size of \(t \), that \(t \) has an index with respect to \(nvnf \). When \(t \equiv \Omega \), it is clear that \(t \) has an index. Induction step:

(1) \(t \equiv f(t_1, t_2, t_3) \). If \(t_1 \) contains \(\Omega \) then by induction hypothesis, \(t_1 \) has an index. By \(1 \in I_{nvnf}(f(\Omega, \Omega, \Omega)) \) and Lemma 3.5, \(1 \in I_{nvnf}(f(\Omega, t_2, t_3)) \). Therefore, from the claim it follows that \(t \) has an index. Otherwise we distinguish three cases:

(1-1) \(t_1 \equiv a \). If \(t_2 \) contains \(\Omega \) then by induction hypothesis, \(t_2 \) has an index. By \(2 \in I_{nvnf}(f(a, \Omega, \Omega)) \) and Lemma 3.5, \(2 \in I_{nvnf}(f(a, \Omega, t_3)) \). From the claim, \(t \) has an index. Otherwise \(t_3 \) contains \(\Omega \). By induction hypothesis, \(t_3 \) has an index. We can obtain \(3 \in I_{nvnf}(f(a, t_2, \Omega)) \). Therefore by the claim, \(t \) has an index.

(1-2) \(t_1 \equiv b \). Similar to (1-1).

(1-3) Otherwise we have \(I_{nvnf}(f(t_1, \Omega, \Omega)) = \{2, 3\} \). By induction hypothesis, \(t_2 \) or \(t_3 \) has an index. By Lemma 3.5 and the claim, \(t \) has an index.

(2) \(t \equiv g(t_1, \cdots, t_n) \) (\(g \neq f \)). Suppose \(t_i \) contains \(\Omega \). Then by induction hypothesis, \(t_i \) has an index. Because \(i \in I_{nvnf}(g(t_1, \cdots, t_{i-1}, \Omega, t_{i+1}, \cdots, t_n)) \), \(t \) has an index from the claim. \(\square \)

By Example 3.4 and Lemma 3.6 we have the following theorem.

Theorem 3.7 The class of NVNF-sequential term rewriting systems properly includes the class of NV-sequential systems.

Proof. NV-sequential system is NVNF-sequential because an index with respect to term is also an index with respect to \(nvnf \). \(R \) of Example 3.4 is NVNF-sequential but not NV-sequential. Therefore the inclusion is proper. \(\square \)

\(t \not\rightarrow_{s} s \) is the index reduction if \(u \in I_{nvnf}(t[u \leftarrow \Omega]) \). Let \(R \) be NVNF-sequential orthogonal term rewriting system. Then we can apply the index reduction to a term which is not a normal form. It is clear that if \(u \) is a redex occurrence of \(t \) and \(u \in I_{nvnf}(t[u \leftarrow \Omega]) \) then \(t/u \) is a needed redex. Huet and Lévy [3] proved that repeated contraction of needed redexes leads to the normal form, if it exists. Thus we have the following theorem.

Theorem 3.8 The index reduction is normalizing strategy for NVNF-sequential orthogonal systems.

The decidability of NVNF-sequentiality was proven by Comon.

Theorem 3.9 ([1]) NVNF-sequentiality of left-linear term rewriting systems (which may have overlapping rules) is decidable.
4 Indices with respect to NVNF-sequentiality

In this section we show that for a given $t \in T_{\Omega}$, it is decidable whether $u \in O_{\Omega}(t)$ is an index with respect to nvnf in t. We introduce the reduction \rightarrow_{ω} which is given in [7].

Definition 4.1 ([7]) The reduction relation \rightarrow_{ω} is defined as follows: $t \rightarrow_{\omega} s$ iff there exists $l \rightarrow r \in \mathcal{R}$, $u \in O(t)$ such that $t/u \uparrow l_{\Omega}$, $t/u \not\equiv \Omega$ and $s \equiv t[u \leftarrow r_{0}]$.

We explain a relationship between this reduction \rightarrow_{ω} and \rightarrow_{nv}, and show the condition for ensuring that Ω-occurrence in a term is an index with respect to nvnf.

Lemma 4.2

(1) If $t \rightarrow_{\text{nv}}^{*} s$ and $t' \leq t$ then $t' \rightarrow_{\omega}^{*} s'$ for some $s' \leq s$.

(2) If $t \rightarrow_{\omega}^{*} s$ then $t' \rightarrow_{\text{nv}}^{*} s$ for some $t' \geq t$.

Proof.

(1) We prove that if $t \rightarrow_{\text{nv}}^{*} s$ and $t' \leq t$ then $t' \rightarrow_{\omega}^{*} s'$ for some $s' \leq s$. If $t \rightarrow_{\text{nv}}^{*} s$ then there exist $l \rightarrow r \in \mathcal{R}$, $u \in O(t)$ such that $t/u \uparrow l_{0}$ and $s \equiv t[u \leftarrow s_{1}]$ for some $s_{1} \geq r_{0}$. If $u \in O(t')$, $t'/u \not\equiv \Omega$ then $t'/u \uparrow l_{0}$. Hence $t' \rightarrow_{\omega} t'[u \leftarrow r_{0}]$ and $t'[u \leftarrow r_{0}] \leq s$. Otherwise it is clear that $t' \leq s$. Using this fact, we can prove (1) by induction on the length of $t \rightarrow_{\text{nv}}^{*} s$.

(2) This is proved by induction on the length of $t \rightarrow_{\omega}^{*} s$. The case of zero is trivial. Assume that $t \rightarrow_{\omega} s_{1} \rightarrow_{\omega}^{*} s$ where $t/u \uparrow l_{0}$, $t/u \not\equiv \Omega$ and $s_{1} \equiv t[u \leftarrow r_{0}]$ for some $l \rightarrow r \in \mathcal{R}$ and $u \in O(t)$. From induction hypothesis, for some $s_{2} \geq s_{1}$, $s_{2} \rightarrow_{\omega}^{*} s$. Let $t_{1} \equiv t/u \uparrow l_{0}$ and $t' \equiv s_{2}[u \leftarrow t_{1}]$. Because $s_{2} \geq s_{1} \equiv t[u \leftarrow r_{0}]$, $t' \equiv s_{2}[u \leftarrow t_{1}] \geq t$. We have $t' \rightarrow_{\text{nv}}^{*} s_{2}$ by $s_{2}/u \geq r_{0}$. Therefore $t' \rightarrow_{\text{nv}}^{*} s$.

Lemma 4.3 Let $t \in T_{\Omega}$ and $u \in O_{\Omega}(t)$. Let \bullet be a fresh constant symbol. Then $u \not\in I_{\text{nvnf}}(t)$ iff there exists $s \in \text{NF}_{\Omega}$ such that $t[u \leftarrow \bullet] \rightarrow_{\omega}^{*} s$ and $\bullet \not\subseteq s$.

Proof. only-if part. If $u \not\in I_{\text{nvnf}}(t)$ then there exists $t' \geq t$ such that $t'/u \equiv \Omega$ and $\text{nvnf}(t')$ is true. Thus $t' \rightarrow_{\omega}^{*} s'$ for some normal form s' from s. From $\Omega \not\subseteq s'$ and left-linearity, we can obtain $t'[u \leftarrow \bullet] \rightarrow_{\text{nv}}^{*} s'$ and $\bullet \not\subseteq s'$. Using Lemma 4.2 (1), we obtain $s \leq s'$ such that $t[u \leftarrow \bullet] \rightarrow_{\omega}^{*} s$. Because s' is a normal form, s is an Ω-normal form and $\bullet \not\subseteq s$.

if part. If $t[u \leftarrow \bullet] \rightarrow_{\omega}^{*} s \in \text{NF}_{\Omega}$ and $\bullet \not\subseteq s$, then there exists $t' \geq t[u \leftarrow \bullet]$ such that $t' \rightarrow_{\text{nv}}^{*} s$ by Lemma 4.2. Let $t'' \equiv t'[u \leftarrow \Omega]$, $s' \equiv s_{\omega}$. We can transform the reduction $t' \rightarrow_{\text{nv}}^{*} s$ into $t'' \rightarrow_{\text{nv}}^{*} s'$. Because s' is an Ω-normal form from s' is a normal form and hence $\text{nvnf}(t'')$ is true. Clearly $t'' \geq t$ and $t''/u \equiv \Omega$. Therefore $u \not\in I_{\text{nvnf}}(t)$.

We next show that for any $t \in T_{\Omega}$, there exists an upper bound of the least hight of Ω-normal form obtained from t by \rightarrow_{ω} when it exists.

For given a term rewriting system \mathcal{R}, \mathcal{R}_{Ω} is defined with $\mathcal{R}_{\Omega} = \{ r_{0} \mid l \rightarrow r \in \mathcal{R} \}$, and $\mathcal{R}_{\text{nvnf}}$ is the smallest set such that $\mathcal{R}_{\Omega} \subseteq \mathcal{R}_{\text{nvnf}}$ and if $t \in \mathcal{R}_{\text{nvnf}}$, $u \in O(t)$ and $r \in \mathcal{R}_{\Omega}$ then $t[u \leftarrow r] \in \mathcal{R}_{\text{nvnf}}$. It is clear that if $r \in \mathcal{R}_{\Omega}$ and $r \rightarrow_{\omega}^{*} t$ then $t \in \mathcal{R}_{\text{nvnf}}$. In the sequel we often omit the subscript \mathcal{R}.

Lemma 4.4 If $t \rightarrow_{\text{nv}}^{+} s$ then there exist $u_{1}, \ldots, u_{n} \in O(t)$ which are pairwise disjoint, and the following conditions hold.

(i) $s \equiv t[u_{i} \leftarrow s/u_{i} \mid 1 \leq i \leq n]$.

(ii) $t/u_{i} \rightarrow_{\omega}^{+} r_{i} \rightarrow_{\text{nv}}^{*} s/u_{i}$ for some $r_{i} \in \mathcal{R}_{\Omega}, 1 \leq i \leq n$.
Proof. By $t \to^+_\omega s$, there exists a reduction
\[t \equiv t_0 \quad \omega \quad t_1 \omega \quad \ldots \quad \omega \quad t_n \equiv s \quad (n > 0). \]
Let $\{u_1, \ldots, u_k\}$ be the set of minimal redex occurrences of $\{u_0, \ldots, u_{n-1}\}$. Then $u_1, \ldots, u_k \in O(t)$ are pairwise disjoint. By minimality of u_1, \ldots, u_k, (i), (ii) hold.

We use $|u|$ for the length of a word u. The length $|t|$ of an Ω-term t is defined by $|t| = \max\{|u| | u \in O(t)\}$. The maximum hight of the left-hand sides and right-hand sides of a given \mathcal{R} is denoted by $\rho_\mathcal{R}$. We write ρ when confusion does not occur. $(t)_{\rho}$ is a prefix term of t whose length is ρ, i.e., $(t)_{\rho} \equiv t[u \leftarrow \Omega | u \in O(t) \wedge |u| = \rho]$.

Lemma 4.5 Let $r \in \mathcal{R}_\mathcal{R}, r \to^*_\omega s$ where $|s| > \rho \times n$ (n > 0). Then there exists $\varepsilon < u_0 < \cdots < u_{n-1} \in O(s)$ and for any i (0 $\leq i \leq n-1$), the following condition holds: $r \to^*_\omega s[u_i \leftarrow r_i]$ and $r_i \to^*_\omega s/u_i$ for some $r_i \in \mathcal{R}_\mathcal{R}$.

Proof. The proof is by induction on n. By $r \to^*_\omega s$, there exists a reduction
\[r \equiv t_0 \quad \omega \quad t_1 \omega \quad \ldots \quad \omega \quad t_m \equiv s. \]
Because $|s| > \rho \times n$ (n > 0), we can obtain $j < m$ such that $t_j \in \mathcal{R}_\mathcal{R}$ and $u_i \neq \varepsilon$ for all i (j $\leq i \leq m - 1$). When $n = 1$, using Lemma 4.4, we can easily show that there exists $u \in O(s)$ such that $u \neq \varepsilon$ and $t_j \to^*_\omega s[u \leftarrow r']$, $r' \to^*_\omega s/u$ for some $r' \in \mathcal{R}_\mathcal{R}$. By $r \to^*_\omega t_j$, we have $r \to^*_\omega s[u \leftarrow r']$. Suppose $n > 1$. Using Lemma 4.4, we can obtain $u \neq \varepsilon$ such that $t_j \to^*_\omega s[u \leftarrow r']$, $r' \to^*_\omega s/u$ and $|s/u| > \rho \times (n-1)$ for some $r' \in \mathcal{R}_\mathcal{R}$. By induction hypothesis, there exist $\varepsilon < u'_1 < \cdots < u'_{n-1} \in O(s)$, and for any i (1 $\leq i \leq n-1$) the following conditions hold: $r' \to^*_\omega (s/u)[u'_i \leftarrow r_i] \equiv \varepsilon$ for $u'_i \subseteq s[\iota \leftarrow r_i]$ and $r_i \to^*_\omega (s/u') \equiv \varepsilon$ for some $r_i \in \mathcal{R}_\mathcal{R}$. Let $u_0 = u$, $u_i = u.u'_i$ (1 $\leq i \leq n-1$). Clearly $\varepsilon < u_1 < \cdots < u_{n-1} \in O(s)$ and $r \to^*_\omega s[u \leftarrow r']$, $r' \to^*_\omega s/u$. For all i (1 $\leq i \leq n-1$), we have $t_j \to^*_\omega s[u \leftarrow r'] \to^*_\omega s[u \leftarrow s[\iota \leftarrow r_i]] \equiv s[\iota \leftarrow r_i]$ and $r_i \to^*_\omega s/u_i$. By $r \to^*_\omega t_j$, we have $r \to^*_\omega s[u \leftarrow r_i]$. Therefore the lemma holds.

Lemma 4.6 Let $t, s \in \mathrm{NF}_\Omega$. If $(t/u)_{\rho} \equiv (s)_{\rho}$ then $t[u \leftarrow s] \in \mathrm{NF}_\Omega$.

For a given term rewriting system \mathcal{R}, let τ, σ, and $k_\mathcal{R}$ be constants defined as follows:
\[\tau = \| \{ (t)_{\rho} | t \in \mathcal{R}_\mathcal{R} \} \|, \quad \sigma = \| \mathcal{R} \| \quad \text{and} \quad \text{let} \quad k_\mathcal{R} = \rho_\mathcal{R} \times (\tau \times \sigma + 1), \quad \text{where} \quad \| A \| \quad \text{is the cardinality of a set} \ A. \]

Lemma 4.7 Let $t \in \Theta$ and $u \in O_\Omega(t)$. Let \bullet be a fresh constant symbol. Then $u \notin I_{\mathrm{nf}}(t)$ iff there exists $s \in \mathrm{NF}_\Omega$ such that $|s| \leq |t| + k_\mathcal{R}$, $t[u \leftarrow \bullet] \rightarrow^*_\omega s$ and $\bullet \not\subseteq s$.

Proof. if part. By Lemma 4.3.

only-if part. If $u \notin I_{\mathrm{nf}}(t)$ then by Lemma 4.3 there exists $s \in \mathrm{NF}_\Omega$ such that $t[u \leftarrow \bullet] \rightarrow^*_\omega s$ and $\bullet \not\subseteq s$. Let s be an Ω-normal form with the least size satisfying this condition. Suppose $|s| > |t| + k_\mathcal{R}$. By Lemma 4.5 and the definition of $k_\mathcal{R}$, we can show that there exists $r \in \mathcal{R}_\mathcal{R}$, $u_1, u_2 \in O(s)$ (u1 $\neq u_2$) such that $(s/u_1)_{\rho} \equiv (s/u_2)_{\rho}$, $t[u \leftarrow \bullet] \rightarrow^*_\omega s[u_i \leftarrow r]$ for $i = 1, 2$. Let $s' \equiv s[u_1 \leftarrow s/u_2]$. By Lemma 4.6, $s' \in \mathrm{NF}_\Omega$ and $t[u \leftarrow \bullet] \rightarrow^*_\omega s'$, $\bullet \not\subseteq s'$. Because the size of s' is smaller than the size of s, we obtain a contradiction.

By Lemma 4.7, in order to determine whether an Ω-occurrence is an index w.r.t. nf, we need to check the reachability to a finite number of Ω-normal form. For a term rewriting system \mathcal{R}, we define \mathcal{R}^Ω as follows: $[\mathcal{R}]^\Omega = \{ l \rightarrow r_0 | l \rightarrow r \in \mathcal{R} \} \cup \{ \Omega \rightarrow t | t \subseteq l_0, l \rightarrow r \in \mathcal{R} \}$. We can prove that in the condition of Lemma 4.7, $\rightarrow^*_\omega s$ can be replaced with $\rightarrow^*_\mathcal{R}$.

Lemma 4.8 ([7])

1. If \(t \xrightarrow{\omega} s \) then \(t \xrightarrow{\mathcal{R}_\Omega} s \).
2. If \(t \xrightarrow{\mathcal{R}_\Omega} s \) and \(t' \leq t \) then \(t' \xrightarrow{\omega} s' \) for some \(s' \leq s \).

Lemma 4.9 Let \(t \in T_\Omega \) and \(u \in O_\Omega(t) \). Then \(u \not\in I_{nvnf}(t) \) iff there exists \(s \in NF_\Omega \) such that \(|s| \leq |t| + k_{\mathcal{R}}, t[u \xrightarrow{\cdot} \cdot \xrightarrow{\mathcal{R}_\Omega^{SF}} \cdot] \not\subseteq s \).

Proof. By Lemma 4.7 and Lemma 4.8. \(\square \)

We assume that \(\mathcal{R} \) is left-linear, so \(\mathcal{R}^{\Omega} \) is left-linear and right-ground (i.e. \(r \) is ground term for any \(l \rightarrow r \in \mathcal{R}^{\Omega} \)). It is show that the reachability problem is decidable for left-linear and right-ground systems [2, 8]. Thus we obtain the following theorem.

Theorem 4.10 It is decidable, for \(t \in T_\Omega, u \in O_\Omega(t) \), whether \(u \) is an index with respect to nvnf in \(t \).

References

