goooboooobgon
950 0 1996 OO0 140-145

140

Type Consistency Problems for Queries in Object-Oriented Databases

A5 EE B vz ik %=
Yasunori ISHIHARA Hiroyuki SEKI Minoru ITO

7% HLAEum R Hl Kb K TR At se Rt
Graduate School of Information Science
Nara Institute of Science and Technology

This paper discusses the computational complexity of type consistency problems for queries in object-oriented
databases (OODBs). A database instance is said to be consistent under a database schema if, for every method
invocation m, the definition of m to be bound is uniquely determined. In this paper, we adopt update schemas
introduced by Hull et al. as a model of OODB schemas, and show that (1) the problem of determining whether
there exists an inconsistent instance under a given recursion-free update schema and (2) the problem of de-
termining whether there exists an inconsistent acyclic instance under a given recursion-free update schema
are both NEXPTIME-complete. It is also shown that (3) the problem of determining whether there exists an
inconsistent acyclic instance under a given arbitrary update schema is undecidable.

1 Introduction

Among many features of object-oriented program-
ming languages, method invocation (or message passing)
mechanism is an essential one. It is based on method
name overloading and late binding by method inheritance
along the class hierarchy. For a method name m, different
classes may have different definitions (codes, implemen-
tations) of m. When m is applied to an object o, one of
its definitions is selected depending on the class which o
belongs to, and is bound to m in run-time (late binding or
dynamic binding).

This paper discusses the computational complexity of
type consistency problems for queries in object-oriented
databases (OODBs). A database instance is said to be
consistent under a database schema if, for every method
invocation m, the definition of m to be bound is uniquely
determined by using the class hierarchy with inheri-
tance. Then the type consistency problem is to deter-
mine whether there exists an inconsistent instance under
a given database schema.

Abiteboul et al. [1] introduced method schemas,
which correspond to a model of OODB schemas without
updating database instances. In Ref. [1], it is shown that

1. the type consistency problem for method schemas is
undecidable in general,

2. NP-complete if every method is recursion-free, and

3. solvable in polynomial time if a given method schema
is monadic (i.e., every method in the schema has at
most one argument).

On the other hand, Hull et al. [2] introduced update
schemas, in which updating database instances is simply
modeled as assignment of objects or basic values to at-
tributes of objects. Every method in update schemas is
monadic. In Ref. [2], it is shown that the type consis-

Table 1: Complexity of type consistency problems.

Instance
Acyclic Arbitrary
NEXPTIME- | NEXPTIME-
complete! complete!

Undecidable! | Undecidable

Recursion-Free
update schema
Arbitrary
update schema

t: Results of this paper.

tency problem for update schemas is undecidable in gen-
eral. In Ref. [3], a subclass of update schemas, called
non-branching update schemas, is introduced. And, it is
shown that the problem of determining whether there ex-
ists an inconsistent acyclic instance under a given non-
branching update schema is solvable in polynomial time.

Update schemas have all of the basic features of
OODBs such as class hierarchy, inheritance, complex ob-
jects, and so on. In this paper, we adopt update schemas
as a model of OODB schemas, and show that

1. the problem of determining whether there exists an in-
consistent instance under a given recursion-free up-
date schema is NEXPTIME-complete,

2. the problem of determining whether there exists an in-
consistent acyclic instance under a given recursion-
free update schema is also NEXPTIME-complete, and

3. the problem of determining whether there exists an in-
consistent acyclic instance under a given arbitrary up-
date schema is undecidable (see Table 1).

2 Definitions

2.1 Syntax of Database Schemas

A database schema is a 4-tuple S = (C, <, Ad, Impl)
where:

1. C is a finite set of class names.

2. <isapartial order on C representing a class hierarchy.
If ¢ < c, then we say that ¢ is asubclass of cand cis a
superclass of . We assume that the class hierarchy is
aforeston C, thatis, forall ¢;, 3, ¢ € C, the following
condition is satisfied:

Ifc<ciandc < e, theney <crorer <ey.

3. Ad : C x Aur — (' is a partial function represent-
ing attribute declarations, where Attr is a finite set of
attribute names. By Ad(c,a) = ¢', we mean that the
value of attribute a of an object of ¢ must be an object
of ¢ or its subclass.

4. Impl : C xMeth — S is a partial function representing
method implementations, where Meth is a finite set of
method names and S is a set of well-formed sequence
of sentences defined below.

A sentence is an expression which has one of the fol-
fowing forms:

1. y:=9, 4. y:=my"),
2. y = self, 5. self.a ==y,
3. y :=self.q, 6. return(y’),

where y, y' are variables, a is an attribute name, m is a
method name, and self is a reserved word that denotes the
object on which a method is invoked (or, to which a mes-
sage is sent). Let s1;s,;- -5, (= a) be a sequence of
sentences. We say that « is well-formed when the follow-
ing two conditions hold:

e No undefined variable is referred to. That is, for each
s; (1 <1< m),ifs;isoneofy =9,y := m@y'),
self.a := y’, and return(y’), then there exists a sentence
s;j (j < 1) that must be one of y' = 3", y' := seff,
y' = self.a’, and ¢’ := m'(y"’) (y" is a variable, o’ is
an attribute, and m’ is a method).

o Only the last sentence s,, must have the form return(y’)

for some variable 3. Thus the other sentences
51, 82,...,8,—1 must be one of types 1 to 5.

Without loss of generality, we often omit temporary vari-
ables for readability. For example, we write “y =
m(self.a)” instead of “y’ := self.a; y := m(y’),” where
y' is a temporary variable.

The method dependence graph [11 G =(V, E) of S is
defined as follows:

e V is the set of all the method names in S; and

e An edge from m to m' is in E if and only if there is
some c such that m appears in Impl(c, m').

If the method dependence graph of S is acyclic, then we
say that S is recursion-free.

141

Lastly, we define the description size of S, denoted
|S1, as follows:

sl= Ic|
+ (the number of attributes)
+ (the number of attribute declarations
given by Ad)
+ (the number of methods)
+ (the total number of sentences
given by Impl).

2.2 Semantics of Database Schemas

Let S = (C, <, Ad, Impl) be a database schema. The
inherited implementation of method m at class ¢, denoted
Impl*(c,m), is defined as Impl(c’,m) such that ¢’ is the
smallest superclass of ¢ (with respect to the partial or-
der <) at which an implementation of m exists, that is,
if Impl(c’’,m) is defined and ¢ < ¢”, then it must hold
that ¢’ < ¢”. If such an implementation does not ex-
ist, then Impl*(c, m) is undefined. Similarly, the inher-
ited attribute declaration of attribute a at class ¢, denoted
Ad*(c, a), is defined as Ad(c’,a) = ¢’ such that ¢’ is the
smallest superclass of ¢ at which an attribute declaration
of a exists. If such an attribute declaration does not exist,
then Ad*(c, a) is undefined. A database instance of Sis a
pair 7 = (v, u), where:

1. Toeachc € C, v assigns a disjoint, finite set, denoted
v(c). Each o € v(c) is called an object of class c.

2. To each object 0 € v{c) and each attribute a € A
such that Ad™(c,a) = ¢, p assigns an object, denoted
ulo, a), that is called the value of attribute a (or sim-
ply a-value) of o. If Ad*(c,a) = ¢, then u(c, a) must
belong to v(c"") for some ¢’ (¢ < c').

Hereafter, we denote (o, a) by o.a. If every object o in
7 satisfies
0.61.02...0, 0

for any sequence of attributes a,, a,,. . ., a,, then 7 is said
to be acyclic.

The operational semantics of a database schema S un-
der a given database instance 7 is formally defined by us-
ing a method execution tree [2]. Here, we do not repeat
the formal definition. Instead, we briefly explain its intu-
itive meaning. As stated before, self represents the object
on which a method is invoked; it is called a self object.

1. The meaning of a sentence y := y' is obvious.

2. y := self means that the self object is assigned to vari-
able y.

3. y := self.a means that the a-value of the self object is
assigned to y.

4. If the control reaches a sentence y := m(y’), then
method m is invoked on the object assigned to 3’ (or,
message m is sent to the object assigned to y') and the
“returned value” is assigned to y. Assume that an ob-
ject o of a class c is assigned to ¢'. If Impl*(c, m) = a,
then o is bound to “self” in a, « is executed, and the
returned value is assigned to y. If Impl*(c, m) is unde-
fined, then a run-time type error occurs.

c Class ¢
/\ aj,az,a’ ¢
a= M Ct
. Ct Ct as Locr
(a) (b}

Fig. 1: < and Ad used in Sect. 3.

5. Consider a sentence self.a :=y’, and let o be the object
assigned to y' when the-control reaches this sentence.
Assume that Ad™(c,a) = ¢’ € C. If o is an object of
aclass ¢ and ¢” < ¢, then the value of attribute a of
the self object becomes o. Otherwise, a run-time type
€ITOr OCCUIS.

2.3 Consistency of Database Schemas

Let S be a database schema, and 7 be a database in-
stance of S. We say that Z is consistent under S when the
following condition holds:

Let m be an arbitrary method of S and o € v(c) be
an arbitrary object in Z. If Impl*(c, m) is defined,
then no type errors occur during the execution of m
ono.

If 7 is not consistent under S, then we say that 7 is incon-
sistent under S.

3 Basic Techniques

In this section, we present some basic techniques
which are used in the following sections. Throughout this
section, C, <, and Ad are defined as follows:

o C={c,ccx};

o < is the reflexive closure of {(c, ¢), (c,c)} (e, cisa
superclass of both ¢; and ¢, see Fig. 1(a)); and

e Adis shown in Fig. 1(b).

Let o be an object of class ¢;. Each attribute a €
{a1,a,,a’,a¢} of o represents a Boolean value: @ rep-
resents true if o.a = o, and false otherwise. Note that
o.a¢ always represents false because of the declaration
Ad(cy, ag) = ct.

First, we define a method nor[a;,a;] as shown in
Fig. 2, which calculates NOR of 0.a; and 0.a;. Since any
Boolean operator can be represented by NORs, we can
construct a method which calculates any given Boolean
formula by using nor[a;, a;]. Formally, we have the fol-
lowing lemma:

Lemma 1: Let o be an object of class ¢;,. Let o' denote

the object returned by the execution of method norfa;, a;]
on o. Then, the following equation holds:

,_J o (if 0.a; # 0 and o0.a» # 0),
o= 0.a¢

(otherwise).
Proof: Consider how o.a' changes during the execution
of nor[a;,a,]. First, o.a’ is set to 0. By the second line
of (¢, nor[ay, az]), o.a’ is set to o.as if 0.a; = o, and un-
changed otherwise. Similarly, by the third line, o.a' is set

142

(e, norfa,azl) : (e, nor')
self.a’ := self; self.a’ := self.as;
y = nor'(self.a;); return(self).

y = nor' (self.az);
return(self.a’).

(c,nor') :
return(self).

Fig. 2: Methods which calculate NOR of 0.a; and o0.a,.

) ©@ ©
ds ag as
@_@_ ese @_ a0
01 07 Of:

— @: an object of class ¢

Fig. 3: A database instance.

(e, copy'[a2]) :
self.a; := self.ay;
return(self).

(ex, copylai, az]) :

y := copy'[a:](self.a);
y .= copy' [az](self.a1);
return(self).

H

(e, copy ' [a2]) :
self.ay = self;
return(self).

(a1, copy”/[/clzz]) :

y :=copy [a:](self.a=);
return(self).

(e,copy”[a2]) :
return(self).

Fig. 4: Methods which copy o;.a; t0 0;41.a3.

to o.as if 0.a; = o, and unchanged otherwise. Therefore,
o.a' is set to o.a; if 0.a; = o or 0.a> = o, and unchanged
(i.e., 0.a' = o) otherwise. O

Next, consider a database instance of this schema
shown in Fig. 3. By invoking a method copyla,a-]
(Fig. 4) on an object o; in the “a,-chain,” the Boolean
value represented by o;.a; is copied to oj.1.a2 (=
0;j.0= .a2). Formally, we have the following lemma:

Lemma 2: Let o; be an object of class ¢;. After the exe-
cution of method copy[a,, a»] on o;, the following equa-
tion holds:

0j41.02 = { 0j+1 (if 0j.a, = 05),

oj+1.0¢ (otherwise).

Proof: An easy observation proves this lemma.]

Lastly, see again Fig. 3. Suppose that a method mg
returns o.a—. when myg is invoked on o. Define method
m; (1 <1 < n)as shown in Fig. 5. It is easy to see that
m,, sequentially invokes mg on 2" objects in the “a—,-
chain” (see Fig. 6). Note that m; (1 < ¢ < n) can be
constructed in polynomial time of n.

4 Recursion-Free Schemas

Definition 1: Problem RF/AC is to determine whether
there exists an inconsistent acyclic instance under a given

(e;mi). (1<i<n):
y = m;_i(self);

y :=mi_1(y);
return(y).

(e, mo) :

return(self.a=.).

Fig.5: Method which sequentially invokes method mg on
2™ objects.

my my my my ny

........:)@:)...

(4] 03 04 oy

Fig. 6: Invocation of m.,, on o;.

recursion-free schema S. m}
We show that RF/AC is NEXPTIME-complete.

Lemma 3: RF/AC is in NEXPTIME.

Proof: Since S is recursion-free, execution of any method

in S always terminates and the number of objects tra-

versed during the execution is bounded by |S|!S!. There-

fore, to solve RF/AC, nondeterministically guess an in-

stance of size |S|IS! = 21511818 which causes a type error.
O

To show that RF/AC is NEXPTIME-hard, we reduce
any language in NEXPTIME to RF/AC. To do this, for
a given input string z of a fixed 2P-time bounded non-
deterministic Turing machine M, we construct, in poly-
nomial time of |z|, a schema Sy . such that there is an
acyclic instance that is inconsistent under S 4, if and only
if M accepts . First, we define a nondeterministic Turing
machine and an instantaneous description.

Definition 2: A nondeterministic Turing machine M is a
triple (@, Z, 6), where

o Q is afinite set of states. @ has three special states: the
initial state go, the accepting state gy.s, and the rejecting
state gno;

e X is afinite set of symbols. X has two special symbols:
the blank symbol B and the first symbol >. The first
symbol is always placed at the leftmost cell of the tape;
and

e § is a function which maps (@ — {qo, gyes, gno }) X X t0
the power set of @ x X x {«—, —,~}. § must satisfy
the following conditions:

— For each pair (g,0) € (Q — {0, qyes, Ino}) X X,
|6(g,)| (the number of possible nondeterministic
choices) is at most two. Assume that the elements
of each |6(g, o')| are identified by 0 and 1; and

- If(¢’,o,d) € 6(g, b),theno = b andd = —.
Therefore, the tape head never falls off the left end
of the tape. a

143

Fig. 7: < of Sps .

Class cu Class ey
aty...,aK c a= .G
al,...,ak c ai,...,aK c
al,...,ak c al,...,ax c
al’,...,a¥ c al,...,ay 1 ¢
Qcn c a’,...,a¥ c
ag . Cf Qch (o]
af Locf

Fig. 8: Adof Sps,,.

Definition 3: An instantaneous description (ID) I of M
is a finite sequence (g1,01).. .., {qr, 0k), Where g¢; € QU
{1} and o; € Z. It is required that exactly one g; is in Q
(¢ denotes the head position). The i-th pair (g;, ;) of an
ID I is denoted by I[:]. The transition relation I‘M‘ over
the set of IDs are defined as usual. Let I; denote an ID
after j-step transition of M. |

Let M = (Q,%,6) be a 2°™-time bounded nonde-
terministic Turing machine. Let ¢ € (£ — {B, b>})* be
an input string for M. Letn = |z| and N = 2P(™), Let
K = [log(|Q| + 1)] + [log |Z[]. For M and z, define C,
<, and Ad of Sy, as follows:

o C= {C) Ct0, Ctl 5 Cit cf};

o < is the smallest partial order such that
L. co < ey < e c,and
2. ¢; < c(seeFig. 7); and

o Ad is shown in Fig. 8. Strictly speaking, some more
temporary attributes are necessary to store intermediate
result of calculation.

An example of an acyclic database instance of Sy ., is
shown in Fig. 9. Note that any “a—,-chain” in any acyclic
database instance terminates in an object of class ¢;. Ob-
jects o1,..., ooy in Fig. 9 are used as working space
for simulating M: I;[¢] is “stored” in object 0+ (see
Fig. 10). The class which each object o; belongs to repre-
sents the nondeterministic choice at j-th step of M : Class
¢io represents choice 0 and c¢; does choice 1.

In what follows, we show that there is an inconsistent
acyclic instance under Sy, if M accepts z. Let T be
an acyclic instance with an a-,-chain whose length & is
greater than 2N (e.g., instance shown in Fig. 9). Let o;
(1 <t < k) be the i-th object in the a_.-chain.

Define method TM as shown in Fig. 11. Suppose that
TM is invoked on o;. The behavior of TM is as follows:

01 0y 03 O9N i Of

Working Space

Fig. 9: An acyclic instance of Syr .

0 0, 03 04 05 Og
Iy Ll L2l LB L4l Lls] lel
I Ll nl2l ni3l nf4 nisl
L L1 LI2]1 LI3] L4

Fig. 10: Rewriting IDs.

(¢, test) :
return(self).

(ca, TM) :

Y= init.wsp(nm(self);
Y 1= step,,)(sell);

y = accept(self);

y = test(y);
return(self).

Fig. 11: Methods TM and test.

1. Initialize the first 2N = 2P+ objects (line 1 of
(cuy, TM) of Fig. 11). More precisely, for each 7 (1 <
1 < 2N), Iy[+] is stored in 0;.a4,. .., 0;.ax by binary
encoding.

2. Rewrite the ID stored in the working space N (= 2P(™)
times (line 2). This phase is explained in detail below.

3. Check whether the accepting state gy is in the last
ID, ie., in objects on4i,..., ooy (line 3). The re-
turned value of accept is an object of class ¢y (or its
subclass) if gy, is in the last ID. Otherwise, an object
of class ¢ is returned. Method accept can be easily
constructed by using methods nor{a,, a,], copyfai, a,]
and m,, stated in Sect. 3.

4. Invoke test on the returned value of accept (line 4).
Since method test is defined only for class c¢, that will
cause a type error if gyes is in the last ID. That is, T is
inconsistent under S 5z, if M accepts .

Now define methods stepy,. . ., step,, as shown in
Fig. 12. Consider the j-th step of M. Each I;_[:]
(1 €7 £ N)is stored in object 0;,;_; (see Fig. 13(a)),
and method step, is invoked on o;. By method choice
(Fig. 12), the nondeterministic choice ch; € {0, 1} at the
Jj-th step, which is given by the class which o; belongs
to, is stored in 0j.ac,. Then, method copy, (Fig. 12) is
invoked on each o0;,;_; (1 < ¢ < N). The underlined
part (the first line of (c1, copy,)) is macro notation. All
of them can be expanded when M and z are reduced to

144

(cu,step;) (1 <1< p(n)) :

y = step, _,(self);
(cu, step) :
return(self).

y =step;_;(y);
return(y).

(cu, step,) :

y := choice(self);

Y 1= COPY,p(ny (eI,

y = deltaym)(self.a=);
return(self.a-).

(e, choice) : (eu, choice) :

self.ay, := self.ag; self.aq, := self;

return(self). return(self).
(cu,copy;) (1 <i<p(n)):

y = copy;_,(self);
y = copy;_(y);
return(y).

(eu, copy,)
foreachi (1 < i < K)
self.a} := self.a;;
y := copyla;, a;'](self);
y = copyla! , a)''1(self);
y = copylacn, acn](self);
return(self.a=).

(cu,copyy) :
return(seif).

Fig. 12: Methods step;, choice, and copy,.

0j 0j+1 Ojsy Ojs3

(@ ar. ax g1 5021 14031 1[4
®) alve ag Lall] fal2l 54031 504
aty.., ag 1,_1[1]
aty... ag’
dch | E—— [1 e -

€ aj., ag ;2]

Fig. 13: Behavior of method step.

Su,.. After the invocations of copy,, each object o0;4;
(1 £¢ < Nyhas I;_1[¢ — 1], I;—1[z], I;-1[2 + 1], and
ch; (see Fig. 13(b)). Lastly, method deltag is invoked on
each object 0;,; (1 <2 < N) to obtain I;[z], which is to
be stored in ay,.. ., ax of o;,; (see Fig. 13(c)). Method
deltay can be constructed in constant time with respect to
n by using nor[a, a,] stated in Sect. 3.

Conversely, we show that there is an inconsistent
acyclic instance under Sjz . only if M accepts x. The
whole of 837, can be easily constructed so that a type er-
ror can occur only at the fourth line of (cy, TM). And it is
also easy to see that gy is stored in some of the objects

ON+1s- - -» 02 only if M accepts z.
Now we have the following theorem:

Theorem 1: RF/AC is NEXPTIME-complete. o

Let RF be the problem of determining whether there
exists an inconsistent instance under a given recursion-
free schema S. By slightly modifying the construction of
Sz, we have the following theorem:

Theorem 2: RF is NEXPTIME-complete.]

5 Arbitrary Schemas, Acyclic Instances

Definition 4: Problem AC is to determine whether there
exists an inconsistent acyclic instance under a given
schema S. O

We prove that AC is undecidable by showing a reduc-
tion from any recursively enumerable language to AC. To
do this, for a given input string = of a fixed Turing ma-
chine M, we construct a schema S}, , such that an acyclic
instance is inconsistent under S’y , if and only if M ac-
cepts z. ’

Let M = (Q, %, 6) be a deterministic Turing machine,
ie., for each pair (g,0) € (Q - {qo, Gyes, o }) X Z,
|6(g,0)| is at most one. Let z € (£ — {B, b})* be an
input string for M. Let K = [log(|Q| + 1)] + [log|Z[].
For M and z, define C, <, and Ad to be the same as Sz,
in Sect. 4.

Let us construct TM" which simulates M on z. Since
recursion is allowed now, we modify init-wsg, step,,
etc. in Sect. 4 so that they recursively traverse the a—, -
chain until it reaches object o of class cy. Therefore,
NIt WSp(rye1, stepy), etc. are not necessary. Moreover, it
is unknown when M stops in advance. A tentative solu-
tion would be as follows:

(ct1,TMI) M

y := init.wso(self);

y := step&accept&test(self);
return(self).

(eu, step&accept&test) :
y = stepy(self);

y := accept(self);

y = test(y);

y := step&accept&test(self.a=);
return(seif).

However, this does not work since step&accept&test
may invoke on an object in an a,-chain which is not ini-
tialized. Hence, it is possible that there is an acyclic in-
stance that is inconsistent under S, , evenif M does not
accept .

Instead, we define TM' and step’ as shown in Fig. 14.
Classes ¢y and ¢;; represent the choice whether rewriting
the ID is continued or not. To explain this more precisely,
consider the situation that TM’ is invoked on o; in Fig. 9.
All the objects in the a— ~chain are initialized by method
init_wsg. Then step’ is invoked on o;. If o; is of class ¢y,
then the ID stored in the a-, -chain is rewritten and step’
is recursively invoked on oy. This recursive invocation is

145

(cll) TMI) :

y = init_wso(self);
y.:= step’ (self);

y := accept(self);
y = test(y);
return(self).

(cu,step’) :
return(self).

Fig. 14: Methods TM’ and step’.

(ctU, Step/) :

y = copy,(self);

y := deltao(self.a=);
y .= step’(self.a=);
return(self).

repeated until some object o; of class ¢y or ¢y is encoun-
tered. That is, if 0; € v(cy) foreach j (1 < j < k') and
or: € v(cy)Uv(cy), then TM simulates M up to k' steps.

By an easy observation, we have the following theo-
rem:

Theorem 3: AC is undecidable. m]

Consider executing TM' on a cyclic database in-
stance. Since all the attributes except a—, are initialized
by init-wso, we can focus on the case that a—, forms a cy-
cle. In this case, TM’ does not terminate. More precisely,
init-wsy is invoked infinitely many times without type er-
ror. Therefore, we have the following known result [2]:

Theorem 4: The problem of determining whether there
exists an inconsistent instance under a given schema S is
undecidable. O

6 Conclusions

Theorems 1 and 2 mean that there are no algorithms
to solve RF/AC or RF better than the obvious algorithm
stated in Lemma 3. On the other hand, as stated in Sect. 1,
these problems for method schemas are solvable in poly-
nomial time (recall that method schemas do not update
database instances). It is interesting to find a subclass of
update schemas for which type consistency problems are
solvable more efficiently than NEXPTIME.

References

[1] S. Abiteboul, P. Kanellakis, S. Ramaswamy and E.
Waller: “Method Schemas,” J. Computer & System
Sciences, Vol. 51, No. 3, pp. 433-455, Dec. 1995.

[2] R. Hull, K. Tanaka and M. Yoshikawa: “Behav-
ior Analysis of Object-Oriented Databases: Method
Structure, Execution Trees, and Reachability,” Proc.
3rd Int’l Conf. on Foundations of Data Organization
and Algorithms, pp. 372-388, June 1989.

[3] H. Seki, Y. Ishihara and M. Ito: “Authorization Anal-
ysis of Queries in Object-Oriented Databases,” Proc.
4th Int’l Conf. on Deductive and Object-Oriented
Databases, Lecture Notes in Computer Science 1013,
pp- 521-538, Dec. 1995.

