0oooo0O0oooo
950 0 1996 0 33-38 33

On the Computational Power of Quantum Turing Machine

Takashi Mihara
=R FEE

School of Information Science
Japan Advanced Institute of Science and Technology, Hokuriku
15 Asahidai, Tatsunokuchi, Ishikawa 923-12, Japan

1 Introduction

A computation is an evolution from one physical state to another, and so are Today’s computers,
i.e., the computations of them are changes of electric signals. What are differences of quantum
computers from classical computers? The computational principles of classical computers are based
on classical physics. In principle, we can construct them from devices based on classical physics
without loss of computational resources, where a computational time, for instance, is estimated
under a defined unit time (the real movement of one device may be much later than that of
another).

On the other hand, the computational principles of quantum computers are based on quantum
physics. We do not know whether quantum physics is different from classical physics, however, it
is widely believed that they are different. Under this assumption, R. P. Feynman pointed out that
the quantum computers are more powerful than the classical computers[6]. Furthermore, there are
some results indicating that the quantum computers seem to be more powerful than the classical
computers (e.g., [5, 8]).

In this paper, we consider decision problems: let £ be a set, and P(z) a program for an input
z. P(z) returns “YES” if z € L(an accepted state), otherwise P(z) returns “NO” (an unaccepted
state). On the quantum computers, when the probabilities recognizing accepted states are given,
we estimate the probabilities recognizing unaccepted states.

2 Preliminaries

In quantum physics, a physical state is represented as a vector in a Hilbert space. We use
[, [%1), [¥2), [3), @), le1), and |p2) for vectors in a Hilbert space, a1, as, ..., and by, bs,..., for
complex numbers (a* is the complex conjugate of a), and (2|11) for the inner product of |1;) and
[th2). Then the following conditions are satisfied:

L. (32lth1) = (¥1vp2)*,
2. (Y3](a1lth1) + azlthe)) = a1(¥aleh1) + az(¥slyha),
3. 0 < (Y|¢) < o0, and (|yp) = 0 implies |¢p) = 0.

For a complete overview on Hilbert spaces, for instance, we refer the reader to [3, 9].

Furthermore, Let |e;) for ¢ = 1,2,...,n be an orthonormal basis in an n-dimensional Hilbert
space H", i.e., (ei|le;) = &;;, where 6;; = 1 and 6;; = 0 if ¢ # j. Any vector |¢) is represented
as |[¢) = }7; a;le;), and the conjugate vector (3| as (| = Y%, a¥{e;|. The inner product of
[vh1) = 331 aile) and fiha) = 370 biles) is

(Walthr) =Y bfas.
i=1

34

For instance, let |e1) = (1)) and |e2) = (g) be a basis in H2, and |31) = |e1) +i|es) = (1)

and |i2) = ile1) + 3le2) = (;), then (y2|¥1) = (—1,3) (1) = 2.

Next, let us define computations on the quantum computers. For the formal definition of a
quantum Turing machine(QTM, for short), we refer the reader to [2, 7]. As mentioned above, a
computation is an evolution from one physical state to another. The evolution of a physical state
is executed in applying a unitary matrix U (i,e,, UU' = UtU = I, where Ut is the transposed
conjugate of U, and I is the unit matrix) to a vector in a Hilbert space. Let |1;n) be the initial
state, and |Y,ut) an output state after T' time, then

I"/’out) = UTI¢in>o
When a state is a superposition |¢) = aj|¢1) + az2|¢e),
Ulp) = Ulail1) + az2lp2)) = a1Uly1) + a2U|ee).

Then the results are obtained in measuring(or observing) the output state as follows: we can obtain
the |¢) element with probability |{¥|tout)|?-
Furthermore, let us represent the QTM as a physical state(i.e., as a vector). Let |0) =

((1)) and |1) = (1) be a basis in one-bit space. For n-bit(n > 2) space, any vector |z1,z2,...,Z5)

for z; € {0,1} is represented as the tensor products of one-bit states as follows:
I:L‘]_,:Bz, K ,$n> = |$1) ® |$2> X Q lwl)’

Let |e1), -, |em) be a basis in H™, and |f1),-*,|fn) a basis in H™. Then the tensor product
H™QH™ of H™ and H" is defined as mn-dimensional space such that |e;) ® |f;) fori =1,2,...,m
and j =1,2,...,n are the basis. For instance, let |¢) be any vector in H™, and |¢) be any vector
in H", i.e., [¢) = 3221 aile;) and |p) = 37, bj|f;). Then

Y)Y Q lp) = EZa,b les) ® |f5)-

=1 j=1
The inner product of two vectors, |$1) ® |¢1) and [12) ® |@2), in H™ @ H™ is
((¥2] ® (p2) (I¥1) ® |91)) = (Y2|vh1){2lip1)

Let S;, be an operator in H™, and S, an operator in H".

(Sm ® Sz)(|9h1) ® |2)) = (Sml¥h1)) ® (Snlt2)),
(Sm ® Sn)(a1|¥1) + a2|¥2)) = a1(Sm ® Sp)|th1) + a2(Sm ® Sn)|h2).

Finally, let |C) be a finite control, |T} a tape, and |H) a tape head. Each of these is also constructed
as a composed system of one-bit physical systems (e.g., |C) = |¢})®|c)®. . .®|c,), where ¢; € {0,1}
for i = 1,2,...,u). Then a physical state |M) corresponding to the QTM is represented as a
composed system of them as follows:

M) = C) ® |H) ® T).
In general, a state of the QTM corresponds to a superposition of configurations of the QTM.
Namely, when |C) = ELI lei), |H) = E;’;l |hj), and |T) = 3%_; [tk), then

!l m n

M) =373 |e:) ® |hy) ® [ta).

i=1j=1k=1

35

If a state of the QTM is not a superposed one, the state of the QTM is equal to a configuration of
the QTM. Moreover, the QTM can execute all operations of ordinary reversible Turing machines
[1], and unitary transformations for one-bit space[4].

cosa sina cosa isina e 0 1 0
Vb_(—sina cosa)’ Vl_(isina cosa)’ Vz—(0 1)’ I/?3_(0 ei")’

‘/421/0_1) Vv5=V1—17 ‘/6=V'2—1, V7=‘/3_1)

where « is any irrational multiple of .

3 Results

The significant methods to solve problems efficiently on the QTM are quantum parallel computa-
tions, interferences, and measurements. Interferences and measurements are used in combination
with quantum parallel computations. The QTM can make a superposition of some states. For
instance, let a function f : Z2 — Z,, where Zy = {0,1}. The computation of f is executed as
follows:
vo 1
|0a 0’ O) - 51_/2

1
5('0) 01 0) + |07 1, 0) + |1a0’ 0> + l]-, 1,0»

(10,0,0) +1,0,0))

Vy
—

% %(|0,0,f(0,0)) +10,1, £(0,1)) + [1,0, £(1,0)) + [1,1, £(1,1)}).

The QTM can compute all the values of f in parallel, so we call these computations quantum
parallel computations.

Next, interferences are used efficiently in the following way. Let |¢) = 3 7, a;|e;) be a state,
where |e;) for i =1,...,n are a basis. Now, let |e;) be executed as |e;) — 3°7_; bijle;). Then
n n
) = Y O aibij)le;) = |¢').
3=1 =1

For instance, when }.7_; a;b;; = é;1 for some k, then |¢') = |ex). This implies that we can obtain
lex) element with certainty. P. W. Shor used efficiently this method to solve discrete logarithms
and factor integers. Namely, he used the following property:

Mzw:l 2TiIK/M _ M (if K is a multiple of M),
— 0 (otherwise).

Measurements are used efficiently as follows. Let |ei) for ¢ = 1,...,n be another basis, and
CHED Iy cij|eg)(for orthonormal bases, Y i c¢ipcit = 61 and Y74 ck;cli = 6k1)- Then

n n
[¥) =D aicij)le}).
j=1 i=1

If we can take the good another basis, we will obtain efficiently the results. Note that in this case,
since the state does not change, the computational time also does not increase (the measurement
time may change). .

In this section, we investigate the power of measurements. Here, we consider decision problems.
A decision problem is as follows: let £ be a set, and P(z) a program for an input z. The result
of P(z) returns “YES” if ¢ € L(an accepted state), otherwise it returns “NO”(an unaccepted
state). On the QTM, the computational state for executing P(z) is represented as a physical state
|¢), and the result of it is obtained from the measurement of |¢) using another vector |¢) with
probability [(1/|)|?. In the following, we use that the states are

36

I‘Py)’ |‘Py1>’ I‘Pyz)a .. (fze ﬁ)a
|©n)s |€ny)s|Pns)s- .. (otherwise).

First, we show that we can decompose any unit vector into a unit vector and the orthonormal
vector. In the following, let the dimension of the Hilbert space be n > 3.

Lemma 3.1 Any n-dimensional unit vector |3p) can be decomposed into a unit vector |@) and the
orthonormal vector |¢,) (i.e., {p1|p) =0).

[¥) = alp) + BleL),

where o and 8 are complez numbers, and these vectors are normalized, i.e., W) =1, (plp) =1
and (pLlp1) =1.

proof: Let |e;) fori =1,2,...,nbe an orthonormal basis, |) = Y_; ailes), and |p) = > 1y biles),
where a; and b; for i = 1,2,...,n are complex numbers. Then |¢) = a|p) + Y 1 (a; — ab;)|e;).
Since (| (S (a; — abgle)) = Sy (bai— afbi?) = 0 and (plh) = 1, then a = S-2, ba: = (pl¥)
and B2 =1 — |af?. i

Next, we show that the probability between two states is conservative if the two computational
times are equal.

Lemma 3.2 Let |p1) and |p2) be states. Moreover, let |p1,,) and |p2,,) be the initial states
corresponding to the states above, respectively. If the two computational times are equal, i.e., for
the unitary matriz U and the computational time T, |p1) = UT|py,,) and |p2) = UT|p2,.), then

(p2le1) = (P2, |P1:0)-
proof: Since Uty = I, {p2lp1) = ((‘P2in|(Uf)T)(UT|801i,.>) = (02, [#1:)- o

Let Ty be the computational time of an accepted state, T, be that of an unaccepted state, and
T > Ty, T,. This lemma implies that if we may measure to obtain the results on the QTM after T
time, we can estimate the probability between the accepted state and the unaccepted state before
the execution.

Now, let us consider estimating the probabilities of unaccepted states. First, we consider a
simplified case such that there exist only one accepted state |p,) and one unaccepted state |¢y).

Lemma 3.3 Let |¢y) and |p,) be the accepted state and the unaccepted state, respectively, and
we measure the states using an state |[¢p). Moreover, let |(|py)2 = py, |(¥|ea)? = pn, and
I(‘Pnl‘P‘y)Iz = Pny, where 0 < py,pny < 1. Then

Pn = PyPny (ifpy =1 or ppy = 1);
0<pn< (m‘*' \/(1 "Py)(l_Pny))2 (ifpy + Py < 1),
(v/PyPry — \/(1 —py)(1- Pny))z < Pn < ({/PyPry + \/(1 —py)(1 "Pny))z

(otherwise).

proof: By Lemma 3.1,
) = /Pye® lew) + /T~ Pye®|py1),
ln) = \/Prye™™|py) + v 1_"1' pnyew4|<p;_|_), and
{pyrley) = eyLley e,

where 61,02, 03,04 and 6' are some real numbers determined by the given states, and {(py|@y.1) =0
and (py|¢,,) = 0. Since

($lon) = VEBage ®) + /(L=)L~ pag) oy Ll)X+,

37

then

P = |loa)l* = IyPaPay + /(1=)L~ pa)l (sl)IeP

where0=01——02—03+04+0’. .
If py = 1 or pay = 1, pn = pyPny. So, in the following, let py # 1 and pny # 1. The
value of p, is maximum if e = 1 and |{¢y J_|<p;)| = 1. Next, we estimate the minimum of p,.

TQ satisfy v/ PyPny + \/(1 - py)(l —pny)l(wy.Ll‘P;J)Ieio = 0, we have e® = —1 and |(90yJ_|‘P;J_>I =
dﬁ%;. Then, since |(<Pyl|‘P;, 1 £ 1, py+pay < 1. Therefore, if py+pny < 1, the minimum
of p, is zero, otherwise it is (\/PyPny — \/(1 — py)(1 — Pny))?. Then

Pn = PyPny (if Py = lor Poy = 1),

0 < pa < (y/PyPay +4/(1 = py) (1 — pay))? (if py + Pry < 1),

(\/pypny - \/(1 - py)(l - pny))2 <pn < (\/Pypny + \/(1 - Py)(l - pn'y))z
(otherwise).

Using this lemma, we obtain the following theorem.

Theorem 3.1 Let |py) and |p,) be the accepted state and the unaccepted state, respectively, and
we measure the states using an state [p). Moreover, let |(|py)|2 = py, |(¥l@n)> = pa, and
[{@nloy)|? = pny, where 1/2 < py < 1. Then, if pay < &, pu < 1.

proof: To prove this, we use Lemma 3.3. If py = 1, p, = pnpy. Then pyy < % iff pp < %
So, in the following, let p, = 3 + ¢, where 0 < € < 3. By Lemma 3.3, p, < (\/(% + €)pny +
\/(% —€)(1 = Pry))® = Prmas- When pn,,. < 3,pny <3 —4/7—-€2< 1. O

Corollary 1 1. When py =1, ppy = 0 iff p, = 0.

2. When % <py<1,0<L pa £1—py even if ppy = 0, and we may be able to take p, = 0 if
OSPnyﬁl—Py- o

These results imply that, when there exists a unitary matrix V such that |py) — V]py) = €¥|p,),
we may be able to take § such that the probability corresponding to the new unaccepted state

ln) = Vien) is [{len)? = [(81(VIea))* < Kelon)l?.

Next, we investigate about more general states.

Theorem 3.2 Let |py) and |pn;) for j = 1,...,K be the accepted state and the unaccepted
states, respectively, and we measure the states using an state [p). Moreover, let |(¥]py)|? = py,

I("/’l‘)on,-)P = Pn;, and [(¢n; leg)|? = Pnjy, where 0 < py,pn;y < 1. Then, forj=1,...,K,

Pn = PyPn;y (ifpy =1or Pnjy = 1),
0< Dn; < (\/pyp'njy + \/(1 - py)(l - pnjy))2 (ifpy + Pajy <1),
(\/pypnjy - \ﬂl - Py)(l - pn,jy))z < Pn; < (\/pyPnj'y + \/(1 _P'y) (1- Pnjy))z

(otherwise).

Especially, let 1/2 < py < 1. Then, if pn,y < %, Pn; < %

proof: We can obtain by Lemma 3.3 and Theorem 3.1. O

The problem in [5] comes under this theorem. For L(> 2) accepted states and one unaccepted
state, we can obtain the similar theorem by exchanging the accepted states and the unaccepted
state.

Finally, let us consider L accepted states and K unaccepted states.

38

Theorem 3.3 Let |py,) fori = 1,...,L, and |py,) for j = 1,...,K be the accepted states and
the unaccepted states, respectively, and we measure the states using an state |yp). Moreover, let
|('¢|‘)0yi>|2 = Py;>» K‘Pnjl‘Py,'Hz = Pnjyi» and I("/’l‘Pn_-,-)lz = Pa;; where 0 < PyirPnjy; < 1. Then, for
i=1,...,K,

Pn = PymPrnjym (if Py, =1 or Pnjym = 1 for somem),
0< Dn; < Pn;,... (ifpy; +pnjyi <1 fO’I" all i),
pnjm‘-u S Pnj S Pnjm“ (other'wise),

 where, when pu,(i)+ = (y/FyPryss & /(L= Py) (L~ Paygs))?, then, for h(= hi,...,hy) satisfying
Pys + Pnjy > 1, Poj i & ma'x{pﬂj (h1)-,. .- 1P (h1)-}, and Prjpee = Inin{pnj(l)+, <+ Dn; (L)+}-
Especially, let 1/2 < py; <1 for alli. Then, if py,qy, < 1 for Pn;(9)+ =Pn;_,_ s Pn; < I

proof: We can obtain by Lemma 3.3 and Theorem 3.1. a

4 Conclusions

In this paper, when the probabilities of accepted states and the probabilities. between accepted
_states and unaccepted states are given, we estimated the probabilities of unaccepted states. This
is one indication to estimate the power of the QTM. Moreover, we will need to investigate the
power of the QTM from several points of view. With investigations like this, the limitations of the
power of the QTM will become more clear.

References

[1] C. H. Bennett, “Logical reversibility of computation”, IBM J. Res. Dev., 17(1973), pp. 525-532.

[2] E. Bernstein and U. V. Vazirani, “Quantum complexity theory”, in: Proc. of 25th ACM Sym-
posium on Theory of Computing (San Diego, California, 1993), pp. 11-20.

[3] L. Debnath and P. Mikusinski, Introduction to Hilbert spaces with applications (Academic Press,
San Diego, 1990).

[4] D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum com-
puter”, Proc. R. Soc. Lond., A 400(1985), pp. 97-117.

[5] D. Deutsch and R. Jozsa “Rapid Solution of Problems by Quantum Computa,tlon” Proc. R.
Soc. Lond., A 439(1992), pp. 553-558.

[6] R. P. Feynman, “Simulating Physics with Computers”, Int. J. Theor. Phys., 21(1982), pp.
467-488.

[7] T. Mihara and T. Nishino, “Quantum computation and NP-complete problems”, Algorithms
and Computation, Lecture Notes in Computer Science, 834(1994), pp. 387-395.

[8] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”, in:
Proc. of 35th Annual Symposium on Foundations of Computer Science (Santa Fe, New Mexico,
1994), pp. 124-134.

[9] K. Yoshida, Functional analysis, 6th ed. (Springer-Verlag, Berlin, 1980).

