Large-time Behaviour of Solutions to Phase-Separation Models in

One-Dimensional case

伊藤 昭夫 AKIO ITO

Department of Mathematics
Graduate School of Science and Technology
Chiba University
Chiba, 263
Japan

1. Introduction

Let us consider a one-dimensional model for phase separation, which is described as the following system, noted by (P):

$$\frac{u_t}{u^2} + ww_t - u_{xx} = f \quad \text{in } Q := (0, +\infty) \times (-1, 1), \tag{1.1}$$

$$w_t - \{-\kappa w_{xx} + \xi + w^3 - (1+u)w\}_{xx} = 0 \quad \text{in } Q,$$
(1.2)

$$\xi \in \partial I_{[-0.5,0.5]}(w) \text{ in } Q,$$
 (1.3)

$$\pm u_x(t,\pm 1) + u(t,\pm 1) = 0 \quad \text{for } t > 0,$$
 (1.4)

$$w_x(t, \pm 1) \quad \text{for } t > 0, \tag{1.5}$$

$$[-\kappa w_{xx}(t, \cdot) + (w(t, \cdot))^3 - (1 + u(t, \cdot))w(t, \cdot)]_x|_{x=\pm 1} = 0 \text{ for } t > 0,$$
 (1.6)

$$u(0,x) = u_0(x), \quad w(0,x) = w_0(x) \quad \text{for } x \in (-1,1).$$
 (1.7)

Here, κ is a positive constant; $\partial I_{[-0.5,0.5]}$ is the subdifferential of the indicator function $I_{[-0.5,0.5]}$ of the interval [-0.5,0.5]; f, h_{\pm}, u_0 and w_0 are given data.

This system arises in the phase separation of a binary mixture with components A and B.

In this paper, $\theta := -\frac{1}{u}$ represents the absolute temperature and w_A the order parameter which is the local concentration of the component A; you note that $-0.5 \le w(t,x) := w_A(t,x) - 0.5 \le 0.5$, and w(t,x) = 0.5 (resp. w(t,x) = -0.5) means that the physical situation of the system at (t,x) is of pure A (resp. pure B), while -0.5 < w(t,x) < 0.5 means that the physical situation is mixture.

About this problem, by N. Kenmochi & M. Niezgódka [6] and [7], we know that (P) has a global and unique solution and under some assumptions on the convergences of the data

 $f(t) \longrightarrow 0$ and $h_{\pm}(t) \longrightarrow h^{\infty}$ as $t \to +\infty$ in some senses, $u(t) \longrightarrow u^{\infty}(=h^{\infty})$ as $t \to +\infty$ and any ω -limit function w^{∞} of the order parameter w(t) is a solution of the following steady-state problem, noted by $(P)^{\infty}$:

$$-\kappa w_{xx}^{\infty} + \xi^{\infty} + (w^{\infty})^3 - (1 + u^{\infty})w^{\infty} = \sigma \quad \text{in } (-1, 1), \tag{1.8}$$

$$\xi^{\infty} \in \partial I_{[-0.5,0.5]}(w^{\infty}) \quad \text{in } (-1,1),$$
 (1.9)

$$\xi^{\infty} \in L^2(-1,1), \tag{1.10}$$

$$w_x^{\infty}(\pm 1) = 0, \tag{1.11}$$

$$\frac{1}{2} \int_{-1}^{1} w^{\infty}(x) dx = m_0, \tag{1.12}$$

where $m_0 = \frac{1}{2} \int_{-1}^1 w_0(x) dx$.

Here, from (1.8) and (1.10), we note that

$$\sigma = \frac{1}{2} \int_{-1}^{1} \{ \xi^{\infty} + (w^{\infty}(x))^{3} - (1 + u^{\infty})w^{\infty}(x) \} dx.$$

In this paper, we consider the structure of the ω -limit set of the order parameter w, which is defined by

$$\omega(u_0, w_0) := \{ z \in H^1(-1, 1); \ w(t_n) \to z \text{ in } H^1(-1, 1) \text{ for some } t_n \uparrow +\infty \text{ as } n \to +\infty \}.$$

Notations. For simplicity, we use the following notations:

$$\begin{split} H^1(-1,1): \text{ the usual Sobolev space with norm } |\cdot|_{H^1(-1,1)} \text{ given by} \\ |z|_{H^1(-1,1)} &:= (|z_x|_{L^2(-1,1)} + |z(-1)|^2 + |z(1)|^2)^{\frac{1}{2}}; \\ H^1(-1,1)^*: \text{ the dual space of } H^1(-1,1); \\ (\cdot\,,\,\cdot\,): \text{ the standard inner product in } L^2(-1,1); \\ \langle\,\cdot\,,\,\cdot\,\rangle: \text{ the duality pairing between } H^1(-1,1)^* \text{ and } H^1(-1,1); \\ a(v,z) &:= \int_{-1}^1 v_x(x) z_x(x) dx \quad \text{for } v, \ z \in H^1(-1,1). \end{split}$$

2. Assumptions and known results

Problems (P) and $(P)^{\infty}$ are discussed under the following assumptions:

(A1) κ is a positive constant.

(A2)
$$f \in W_{loc}^{1,2}(0, +\infty; L^2(-1,1)) \cap L^2(0, +\infty; L^2(-1,1))$$
 such that
$$\sup_{t>0} |f|_{W^{1,2}(t,t+1;L^2(-1,1))} < +\infty.$$

(A3) $h_{\pm} \in W_{loc}^{1,2}(0,+\infty)$ such that

$$\sup_{t>0}\{|h_{+}|_{W^{1,2}(t,t+1)}+|h_{-}|_{W^{1,2}(t,t+1)}\}<+\infty,$$

and for some constant $h^{\infty} \in (-\infty, 0)$

$$h_{\pm} - h^{\infty} \in L^2(0, +\infty).$$

- (A4) $h_{\pm}(t) \in (-\infty, 0]$ for all $t \geq 0$ and there exist positive constants A_1 and A_2 such that $\frac{h_{\pm}(t)}{2} 1 \geq -A_1|r| A_2 \quad \text{for all } r \in (-\infty, 0) \text{ and all } t \geq 0.$
- (A5) $u_0 \in H^1(-1,1)$ and $w_0 \in H^1(-1,1)$ such that

$$-\frac{1}{u_0} \in L^2(-1,1),$$

$$w_{0x}(\pm 1) = 0, \quad -0.5 \le w_0 \le 0.5 \text{ on } [-1,1]$$

$$-0.5 < m_0 := \frac{1}{2} \int_{-1}^1 w_0(x) dx < 0.5$$

and there exists $\xi_0 \in L^2(-1,1)$ satisfying

$$\xi_0 \in \partial I_{[-0.5,0.5]}(w_0)$$
 a.e.in $(-1,1)$, $-\kappa w_{0xx} + \xi_0 \in H^1(-1,1)$.

Next, we give a weak variational formulation for (P).

Definition 2.1. For $0 < T < +\infty$ a coupled $\{u, w\}$ of functions $u : [0, T] \longrightarrow H^1(-1, 1)$ and $w : [0, T] \longrightarrow H^1(-1, 1)$ is called a (weak) solution of (P) on [0, T], if the following conditions (w1)-(w4) are fulfilled:

(w1) $u \in L^{\infty}(0, T; H^{1}(-1, 1)),$ $-\frac{1}{u}$ is weakly continuous from [0, T] into $L^{2}(-1, 1)$ with

$$\frac{u_t}{u^2} \in L^1(0,T;H^1(-1,1)^*),$$

 $w \in L^{\infty}(0,T;H^{1}(-1,1)) \cap L^{2}(0,T;H^{2}(-1,1)), \quad w_{t} \in L^{2}(0,T;H^{1}(-1,1)^{*}),$ $ww_{t} \in L^{1}(0,T;H^{1}(-1,1)^{*}).$

- (w2) $u(0) = u_0$ and $w(0) = w_0$.
- (w3) (1.1) holds in the standard variational sense, that is,

$$\frac{d}{dt}\left(-\frac{1}{u(t)} + \frac{1}{2}w^{2}(t), z\right) + a(u(t), z) + (u(t, -1) - h_{-}(t))z(-1) + (u(t, 1) - h_{+}(t))z(1) = (f(t), z)$$
for a.e. $t \in [0, T]$ and all $z \in H^{1}(-1, 1)$.

(**w4**) For a.e. $t \in [0, T]$,

$$w_x(t, \pm 1) = 0,$$

and there exists a function $\xi \in L^2(0,T;L^2(-1,1))$ such that

$$\xi \in \partial I_{[-0.5,0.5]}(w)$$
 for a.e. in $(0,T) \times (-1,1)$ (2.2)

and

$$\frac{d}{dt}(w(t),\eta) + \kappa(w_{xx}(t),\eta_{xx}) - (\xi(t) + (w(t))^3 - (1+u(t))w(t),\eta_{xx}) = 0$$
 (2.3)

for all $\eta \in H^2(-1,1)$ with $\eta_x(\pm 1) = 0$ and a.e. $t \in [0,T]$.

As is easily seen from the above definition, for any solution $\{u, w\}$ of (P) on [0, T] it holds that

$$\frac{1}{2} \int_{-1}^{1} w(t, x) dx = \frac{1}{2} \int_{-1}^{1} w_0(x) dx = m_0$$

and

$$\frac{u_t}{u^2} + ww_t \in L^{\infty}(0, T; H^1(-1, 1)^*).$$

Also, the inequalities $-0.5 \le m_0 \le 0.5$ are necessary in order for (P) to have a solution; if $m_0 = 0.5$ (resp. -0.5), then we see that $w \equiv 0.5$ (resp. -0.5).

We say that a couple $\{u, w\}$ of functions $u : [0, +\infty) \longrightarrow H^1(-1, 1)$ and $w : [0, +\infty) \longrightarrow H^1(-1, 1)$ is a solution of (P) on $[0, +\infty)$, if it is a solution of (P) on [0, T] for every finite T > 0.

We now recall an existence and uniqueness results.

Theorem 2.1. [cf. 7] Assume that (A1)-(A5) hold. Then (P) has one and only one solution $\{u, w\}$ on $[0, +\infty)$, and it satisfies that for every finite T > 0

$$\begin{cases}
 u \in L^{2}(0,T; H^{2}(-1,1)), & u_{t} \in L^{2}(0,T; L^{2}(-1,1)), \\
 w \in L^{\infty}(0,T; H^{2}(-1,1)), & w_{t} \in L^{\infty}(0,T; H^{1}(-1,1)^{*}) \cap L^{2}(0,T; H^{1}(-1,1)), \\
 \xi \in L^{\infty}(0,T; L^{2}(-1,1)),
\end{cases} (2.4)$$

where ξ is the function as in (w4) of Definition 2.1.

As to global estimates for solutions we have the following theorem

Theorem 2.2. [cf. 3] Assume that (A1)-(A5) hold. Let $\{u, w\}$ be the solution of (P) on $[0, +\infty)$. Then,

$$u - u^{\infty} \in L^{2}(0, +\infty; H^{1}(-1, 1)), \quad u \in L^{\infty}(0, +\infty; H^{1}(-1, 1)),$$
 (2.5)

$$\sup_{t>0} |u_t|_{L^2(t,t+1;L^2(-1,1))} < +\infty, \tag{2.6}$$

$$w \in L^{\infty}(0, +\infty; H^2(-1, 1)),$$
 (2.7)

$$w_t \in L^{\infty}(0, +\infty; H^1(-1, 1)) \cap L^2(0, +\infty; H^1(-1, 1)^*)$$
(2.8)

and

$$\sup_{t\geq 0} |w_t|_{L^2(t,t+1;H^1(-1,1))} < +\infty. \tag{2.9}$$

From this theorem, we have the following corollary.

Corollary 2.1. [cf. 3] Under the same assumptions as in Theorem 2.2, the following statements hold:

- (a) $u(t) \longrightarrow u^{\infty}(=h^{\infty})$ weakly in $H^1(-1,1)$ as $t \to +\infty$.
- (b) The ω -limit set $\omega(u_0, w_0)$ is non-empty, compact and connected in $H^1(-1, 1)$. Also, $\omega(u_0, w_0)$ is bounded in $H^2(-1, 1)$.

(c)
$$\lim_{t\to+\infty} \left\{ \frac{\kappa}{2} |w_x(t)|^2_{L^2(-1,1)} + \int_{-1}^1 \left(\frac{1}{4} (w(t,x))^4 - \frac{1}{2} (1+u^\infty)(w(t,x))^2 \right) dx \right\}$$
 exists.

(d) Any ω -limit function $v \in \omega(u_0, w_0)$ is solution of $(P)^{\infty}$.

From this corollary, the absolute temperature $-\frac{1}{u(t)}$ converges to a constant $-\frac{1}{u^{\infty}}$. On the other hand, in general the order parameter w(t) does not converge, but any ω -limit function of w(t) is a solution of (P). So, in the next section we consider the structure of the solutions of $(P)^{\infty}$ and ω -limit set $\omega(u_0, w_0)$.

3. The structure of ω -limit set $\omega(u_0, w_0)$

In this section, we consider the structure of the solution of $(P)^{\infty}$ and $\omega(u_0, w_0)$. Here, we note that the shape of the function $w^3 - (1 + u^{\infty})w$ chages as u^{∞} changes. From this results and (a) of Corollary 2.1, we consider $u^{\infty}(=h^{\infty})$ as a controll parameter. For simplicity, we use the following notations:

$$G(w; u^{\infty}) := \int_0^w \{v^3 - (1 + u^{\infty})v\} dv$$

and

$$H(w; \sigma, u^{\infty}) := \int_0^w \{v^3 - (1 + u^{\infty})v - \sigma\} dv = G(w; u^{\infty}) - \sigma w.$$

Lemma 3.1. [cf. 3] Let w^{∞} be any solution of $(P)^{\infty}$ and put $b = H(w^{\infty}(-1); \sigma, u^{\infty})$. Then, $H(w^{\infty}(x); \sigma, u^{\infty}) \geq b$ for all $x \in [-1, 1]$.

Moreover, $w_x^{\infty}(x) = 0$ if and only if $H(w^{\infty}(x); \sigma, u^{\infty}) = b$, hence $H(w^{\infty}(1); \sigma, u^{\infty}) = b$. **Proof.** Multiplying (1.8) by w_x^{∞} and integrating it over [-1, x], from (1.11) we have

$$-\frac{\kappa}{2}|w_x^{\infty}(x)|^2 + H(w^{\infty}(x); \sigma, u^{\infty}) = b \quad \text{for all } x \in [-1, 1].$$

Hence, this lemma holds.

 \Diamond .

Next, since there exist two cases of the shape of the function $w^3 - (1 + u^{\infty})w$, we consider the two cases one by one.

(i) Case 1: $u^{\infty} \leq -1$

In this case, $w^3 - (1 + u^{\infty})w$ is strictly increasing. So, there exists one and only one solution $\zeta(\sigma)$ of the algebraic equation $w^3 - (1 + u^{\infty})w = \sigma$, that is, $H(w; \sigma, u^{\infty})$ has the following properties:

$$H(w; \sigma, u^{\infty})$$
 is strictly decreasing on $(-\infty, \zeta(\sigma))$,

$$H(w; \sigma, u^{\infty})$$
 is strictly increasing on $(\zeta(\sigma), +\infty)$

and

$$H(w; \sigma, u^{\infty}) \ge H(\zeta(\sigma); \sigma, u^{\infty}).$$

Theorem 3.1. $(P)^{\infty}$ has no non-constant solution.

Proof. We assume that w^{∞} is a non-constant solution of $(P)^{\infty}$.

Then, from Lemma 3.1 and the properties of $H(w; \sigma, u^{\infty})$ we can see that there exist two following cases (α) and (β) for w^{∞} .

$$(\alpha)$$
 $w^{\infty}(-1) \leq \zeta(\sigma)$ and w^{∞} is decreasing on $[-1,1]$.

$$(\beta)$$
 $w^{\infty}(-1) \ge \zeta(\sigma)$ and w^{∞} is increasing on $[-1,1]$.

In both cases (α) and (β) we have $w_x^{\infty} \neq 0$ on (-1,1] which contradicts the boundary condition $w_x^{\infty}(1) = 0$. Therefore, we obtain this theorem.

From Theorem 3.1, we can see that the following theorem, easily.

Theorem 3.2. $(P)^{\infty}$ has a constant solution $v \equiv m_0$ on [-1,1], only.

Moreover, $\sigma = G(m_0; u^{\infty})$ and $b = (1 - m_0)G(m_0; u^{\infty})$.

Proof. From (1.12) $w^{\infty} = m_0$ on [-1.1] must hold. Since -0.5

Proof. From (1.12), $w^{\infty} \equiv m_0$ on [-1,1] must hold. Since $-0.5 < m_0 < 0.5$, $\xi^{\infty} \equiv 0$ on [-1,1]. So,

$$\sigma = \frac{1}{2} \int_{-1}^{1} \{ \xi^{\infty} + m_0^3 - (1 + u^{\infty}) m_0 \} dx$$
$$= m_0^3 - (1 + u^{\infty}) m_0 = G(m_0; u^{\infty}) 0.$$

Moreover,

$$b = G(m_0; u^{\infty}) - \sigma m_0 = (1 - m_0)G(m_0; u^{\infty}).$$

Remark 3.1. From Corollary 2.1 and 3.2, the order parameter w(t) converges $w^{\infty} \equiv m_0$ as $t \to +\infty$. So, there exists one and only one ω -limit set $\omega(u_0, w_0) = \{w^{\infty}\}$.

Case 2:
$$-1 < u^{\infty} < 0$$

In this case, $w^3 - (1 + u^{\infty})w$ is non-monotone and N-shape. So, we consider the case

when $m_0 = 0$.

Here, We note that there exist two cases for the position of constraints -0.5 and 0.5.

First case, when $-0.75 \le u^{\infty} < 0$, these constraints are outside of zero points of $w^3 - (1 + u^{\infty})w$, that is,

$$-0.5 \le -\sqrt{1+u^{\infty}} < 0 < \sqrt{1+u^{\infty}} \le 0.5.$$

Second case, when $-1 < u^{\infty} < -0.75$, they are inside, that is,

$$-\sqrt{1+u^{\infty}} < -0.5 < 0 < 0.5 < \sqrt{1+u^{\infty}}.$$

At first, by using the same technique as in Theorem 3.2, we obtain the following theorem about a constant solution.

Theorem 3.3. $(P)^{\infty}$ has one and only one constant solution $w^{\infty} \equiv 0$ on [-1,1]. Moreover, in this case $\sigma = b = 0$.

In the rest of this case, we consider non-constant solutions of $(P)^{\infty}$. To do so, we note that there exist three following cases of the shape of the function $H(w; \sigma, u^{\infty})$ by the value of σ .

(a) When $\sigma \geq 2\left(\frac{1+u^{\infty}}{3}\right)^{\frac{3}{2}}$, $H(w;\sigma,u^{\infty})$ has the following properties:

$$H(w; \sigma, u^{\infty})$$
 is strictly decreasing on $(-\infty, \zeta_{+}(\sigma))$,

$$H(w; \sigma, u^{\infty})$$
 is strictly increasing on $(\zeta_{+}(\sigma), +\infty)$

and

$$H(w; \sigma, u^{\infty}) \ge H(\zeta_{+}(\sigma); \sigma, u^{\infty}),$$

where $\zeta_{+}(\sigma)$ is a root of the algebraic equation $w^{3} - (1 + u^{\infty})w = \sigma$ such that $\zeta_{+}(\sigma) > -\left(\frac{1+u^{\infty}}{3}\right)^{\frac{1}{2}}$.

(b) When $\sigma \leq -2\left(\frac{1+u^{\infty}}{3}\right)^{\frac{3}{2}}$, $H(w;\sigma,u^{\infty})$ has the following properties:

$$H(w; \sigma, u^{\infty})$$
 is strictly decreasing on $(-\infty, \zeta_{-}(\sigma))$,

$$H(w;\sigma,u^{\infty})$$
 is strictly increasing on $(\zeta_{-}(\sigma),+\infty)$

and

$$H(w; \sigma, u^{\infty}) \ge H(\zeta_{-}(\sigma); \sigma, u^{\infty}),$$

where $\zeta_{-}(\sigma)$ is a root of the algebraic equation $w^{3} - (1 + u^{\infty})w = \sigma$ such that $\zeta_{-}(\sigma) < \left(\frac{1 + u^{\infty}}{3}\right)^{\frac{1}{2}}$.

(c) When
$$-2\left(\frac{1+u^{\infty}}{3}\right)^{\frac{3}{2}} < \sigma < 2\left(\frac{1+u^{\infty}}{3}\right)^{\frac{3}{2}}$$
, $H(w;\sigma,u^{\infty})$ has the following properties:

$$H(w; \sigma, u^{\infty})$$
 is strictly decreasing on $(-\infty, \zeta_{-}(\sigma)) \cup (\zeta(\sigma), \zeta_{+}(\sigma))$

and

$$H(w; \sigma, u^{\infty})$$
 is strictly increasing on $(\zeta_{-}(\sigma), \zeta(\sigma)) \cup (\zeta_{+}(\sigma), +\infty)$,

where
$$\zeta_{-}(\sigma)$$
, $\zeta(\sigma)$ and $\zeta_{+}(\sigma)$ are roots of the algebraic equation $w^{3} - (1 + u^{\infty})w = \sigma$ such that $\zeta_{-}(\sigma) < -\left(\frac{1 + u^{\infty}}{3}\right)^{\frac{1}{2}} < \zeta(\sigma) < \left(\frac{1 + u^{\infty}}{3}\right)^{\frac{1}{2}} < \zeta_{+}(sigma)$.

To the cases (a) and (b), by using the same technique as in Theorem 3.1, we can see that the following theorem holds.

Theorem 3.4. We assume that
$$\sigma \leq -2\left(\frac{1+u^{\infty}}{3}\right)^{\frac{3}{2}}$$
 or $\sigma \geq 2\left(\frac{1+u^{\infty}}{3}\right)^{\frac{3}{2}}$. Then, $(P)^{\infty}$ has no non-constant solution.

From this theorem, we only consider the case (c). In this case, by the results of A. Ito & N. Kenmochi [6], we know that the following theorem holds.

Theorem 3.5. Let w^{∞} be non-constant solution of $(P)^{\infty}$. Then,

- (1) $\sigma = 0$.
- (2) If $-0.75 \le u^{\infty} < 0$, then all ω -limit set $\omega(u_0, w_0)$ is a singleton, that is, $\omega(u_0, w_0) = \{w^{\infty}\}$. Moreover, the number of $\omega(u_0, w_0)$ is equal to $2n_1 + 1$, where n_1 is the number of b with $G(-\sqrt{1+u^{\infty}}; u^{\infty}) = G(\sqrt{1+u^{\infty}}; u^{\infty}) < b < 0$ satisfying the following condition (*):
 - (*) There exist a natural number N(b) such that N(b)I(b) = 2,

where $\pm \eta(b)$ are roots of the algebraic equation $G(w;u^{\infty})=b$ such that $-\sqrt{1+u^{\infty}}<-\eta(b)<0<\eta(b)<\sqrt{1+u^{\infty}}$ and

$$I(b) := \left(\frac{\kappa}{2}\right)^{\frac{1}{2}} \int_{-\eta(b)}^{\eta(b)} \frac{1}{\{G(w; u^{\infty}) - b\}} dw.$$

- (3) If $-1 < u^{\infty} < -0.75$, there exist two posibilities (i) and (ii) of the structure of $\omega(u_0, w_0)$:
 - (i) $\omega(u_0, w_0)$ is a singleton.
 - (ii) $\omega(u_0, w_0)$ contains a continuum of the solutions of $(P)^{\infty}$. Moreover, in this case the following properties hold:

(
$$\alpha$$
) $b = G(-0.5; u^{\infty}) = G(0.5; u^{\infty}).$

- (β) $\eta(b) = 0.5$. Hence, in particular boundary values $w^{\infty}(-1)$ and $w^{\infty}(1)$ take -0.5 or 0.5.
- (γ) $|J_B| = |J_A|$, where $|J_A|$ and $|J_B|$ are the length of the pure region of the components A and B, respectively.

Moreover, the number of $\omega(u_0, w_0)$ is equal to $2n_1 + 2n_2 + 1$, where n_1 is the number of b with $G(-0.5; u^{\infty}) = G(0.5; u^{\infty}) < b < 0$ satisfying (*) and n_2 is the number of the natural number n satisfying the following conditions (**):

(**)
$$nI(G(-0.5; u^{\infty})) = nI(G(0.5; u^{\infty})) \le 2.$$

From this theorem, we are interested in the case when (ii) of (3).

But, this case is very dependent upon the coefficient κ .

At last, we give the theorem to show that ω -limit set is very dependent upon κ .

Theorem 3.6. If κ is large enough to satisfy the following codition (**)

$$2I(G(0.5; u^{\infty})) \ge 2.$$

Then, all ω -limit set are singleton, that is, the order parameter w(t) converges to some ω -limit function w^{∞} as $t \to +\infty$.

Proof. It is clear from the above theorem.

 \Diamond .

Remark 3.2. We can see that ω -limit set is very dependent upon the length of the interval when κ is fixed.

Refferences

- 1. H. W. Alt and I. Pawlow, Existence of solutions for non-isothermal phase separation, Adv. Math. Sci. Appl. 1(1992), 319-104.
- 2. J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis, European J. Appl. Math. 2(1991), 233-280.
- 3. A. Ito and N.Kenmochi, Asymptotic behaviour of solutions to non-isothermal phase separation model with constraints in one-dimensional space, Tech. Rep. Math. Chiba Univ. Vol. 9 No. 12, 1993.
- 4. A. Ito, N. Kenmochi and M. Niezgódka, Large-time behaviour of non-isothermal models for phase separation, Pitman Research Notes Math. Ser. Vol. 325, 1995.
- 5. N. Kenmochi and M. Niezgódka, Nonlinear system for non-isothermal diffusive phase separation, to appear in J. Math. Anal. Appl.

- 6. N. Kenmochi and M. Niezgódka, Large time behaviour of a nonlinear system for phase separation, pp. 12-22, in "Progress in partial differential equations: the Metz surveys 2", Pittmann research notes Math. Ser. Vol. 2901,1993.
- 7. N. Kenmochi and M. Niezdódka, A perturbation model for non-isothermal diffusive phase separation, Tech. Rep. Math. Sci. Chiba Univ. Vol. 8, 1993.
- 8. N. Kenmochi, M. Niezgódka and I. Pawlow, Subdifferential operator approach to the Cahn-Hilliard equation with constraint, to appear in J. Differential Equations.
- 9. O. Penrose and P. C. Fofe, Thermodynamically consistent models of phase-field type for the kinetic of phase transitions, Physica D, 43(1990), 44-62.
- 10. W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations, Commun. in P. D. E., 18(19936),711-727.
- 11. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer Verlag, Berlin, 1988.
- 12. S. Zheng, Asymptotic behaviour of the solution to the Cahn-Hilliard equation, Applicable Anal. 23(1986), 165-184.