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1. Introduction

Let us consider a one-dimensional model for phase separation, which is described as

the following system, noted by (P):

= ww = f in Q= (0,+00) x (~1,1), (1.1)

Wy — {—KWge + €+ 0 — (1 +w)w},, =0 in @, (1.2)

£ € 0l_os505(w) inQ, (1.3)

tu,(t,£1) + u(t,+1) =0 for t > 0, (1.4)

wy(t,+1) for t >0, (1.5)

[—rwge(t, )+ (w(t, -))? = (L +ult, - DwE, - olo=sa =0 fort >0, (1.6)
u(0,2) = uo(z), w(0,z)=wo(z) forz e (—1,1). (1.7)

Here, £ is a positive constant; 0l_os0.5) is the subdifferential of the indicator function
I1_05,0.5 of the interval [—0.5,0.5]; f, hs, uo and wo are given data .

This system arises in the phase separation of a binary mixture with components A
and B. 1

In this paper, 6 := —— represents the absolute temperature and wy4 the order parame-
ter which is the local con?f:entration of the component A; you note that —0.5 < w(t,z) :=
wy(t,z) — 0.5 < 0.5, and w(t,z) = 0.5 (resp. w(t,z) = —0.5) means that the physical
situation of the system at (¢,z) is of pure A (resp. pure B), while —0.5 < w(t,z) < 0.5
means that the physical situation is mixture.
About this problem, by N. Kenmochi & M. Niezgédka [6] and [7], we know that (P) has a

global and unique solution and under some assumptions on the convergences of the data
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f(t) — 0 and hy(t) — A™ as t — +oo in some senses, u(t) — u™(=h>*) as t — 400
and any w-limit function w™ of the order parameter w(¢) is a solution of the following
steady-state problem, noted by (P)™

w4 62 + (W) — (1 + u)w™ = ¢ in (=1, 1), (1.8)
£ € 81[_0.5,0,5](w°°) in (—1,1), (1.9)

£Oo € L2(_171)’ (110)

we(£1) =0, (1.11)

5 / d.’L‘ = My, (112)

where mg =

”‘l\?l»—t

Here, from (1. ) (1 10) we note that

= 5 [HE (@) (L (@)

In this paper, we consider the structure of the w-limit set of the order parameter w, which

is defined by
w(ug, wo) := {z € H'(—1,1); w(t,) — z in H'(—1,1) for some ¢, T +oo as n — +oo}.
Notations. For simplicity, we use the following notations:
H'(-1,1) : the usual Sobolev space with norm | - |g1(~11) given by

[zl 1) = (lzelzaon + 121 + |2(1)P)7;
Hl(—l, 1)* : the dual space of H'(—1,1);
(- ,' - ) : the standard inner product in L*(—1,1);
(-, -): the duality pairing between H'(—1,1)* and H*(—1,1);
a(v,z) := /1 v.(z)2z,(z)dz for v, z € H'(~1,1).

-1

2. Assumptions and known results

Problems (P) and (P)™ are discussed under the following assumptions:
(A1) & is a positive constant.
(A2) f e W0, 4+00; L2(—1,1)) N L?(0, 4+00; L*(—1,1)) such that

igg’ ‘lel»2(t,t+1;L2(—1,1)) < 400.
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(A3) hi € WE2(0,400) such that
stg(lj){|h+lwlv2(t,t+1) + |h_lwiz@e1) ) < +00,
and for some constant A € (—o0,0)

hy — h™ € L}0, +00).

(A4) hy(t) € (—00,0] for all ¢ > 0 and there exist positive constants A; and A, such

that "
+() —1>—Ajlr|—A; forallr € (—00,0) and all £ > 0.
T' .
(A5) uo € H'(—1,1) and wo € H'(—1,1) such that
1
—_— e L% -
" € L*(-1,1),

wos(£1) =0, —0.5 < wp < 0.5 on [1,1]
1 1
0.5 < mg = 5/ wo(z)dz < 0.5
and there exists & € L*(—1,1) satisfying »

éo - 81[_0,5,0.5](100) a.e.in (-—1, 1), —RWoge + fo € Hl_(——l, 1)

Next, we give a weak variational formulation for (P).

Definition 2.1. For 0 < T < +co a coupled {u,w} of functions u : [0,7] — H'(-1,1)
and w : [0,T] — H'(—1,1) is called a (weak) solution of (P) on [0, T}, if the following
conditions (wl)-(w4) are fulfilled:

(wl) u € L2(0,T; H'(-1,1)),

—= is weakly continuous from [0, 7] into L*(—1,1) with
u

M e [N, T; HY (~1,1)%),

w e L®(0,T; H'(-1,1)) N L*0,T; H*(-1,1)), w, € L*(0,T; H'(-1,1)*),
ww, € LY0,T; HY(—1,1)%).
(w2) u(0) = uo and w(0) = wo.
(w3) (1.1) holds in the standard variational sense, that is,
d{ 1 1,
7 (—@ + Tk (t),z) + a(u(t), z)
H(u(t, =1) = h-(t))2(=1) + (u(t, 1) = ~y.(2))2(1) = (f(2),2) (2.1)
t

for a.e. t € [0,T] and all z € H'(—1,1).
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(w4) For a.e. t €[0,T],
wy(t, £1) =0,

and there exists a function ¢ € L*(0,T; L*(—1,1)) such that
£ € 00505 (w) fora.e in (0,7T) x (—1,1) (2.2)

and

4
dt
for all n € H*(—1,1) with n,(£1) = 0 and a.e. ¢ € [0, 7.

(w(t),7) + K(wes(t), nez) = (£(F) + (w(t))” = (L + u(@)w(t),nee) =0 (2.3)

As is easily seen from the above definition, for any solution {u,w} of (P) on [0, 7] it holds

that
1

1 1
—/ w(t,z)dz = l/ wo(z)dz = my
2/ 2 /1
and
u ~ «
;g +ww, € L0, T; HY(=1,1)").

Also, the inequalities —0.5 < mg < 0.5 are necessary in order for (P) to have a solution;
if mg = 0.5 (resp. —0.5), then we see that w = 0.5 (resp. —0.5).

We say that a couple {u,w} of functions u : [0, +o0) — H'(—1,1) and w : [0, +00) —
H'(—1,1) is a solution of (P) on [0, +00), if it is a solution of (P) on [0, 7] for every finite
T>0.

We now recall an existence and uniqueness results.

Theorem 2.1. [¢f. 7] Assume that (A1)-(A5) hold. Then (P) has one and only one
solution {u,w} on [0,+00), and it satisfies that for every finite T > 0

5

u€e L*0,T; H*(-1,1)), wu; € L*0,T;L*(—1,1)),
w e L>=(0,T; H*(-1,1)), w; € L=(0,T; H'(=1,1)*) N L*(0,T; H(-1,1)), (2.4)
£ € L=(0,T; L*(~1,1)),

where & is the function as in (w4) of Definition 2.1.

As to global estimates for solutions we have the following theorem

Theorem 2.2. [cf. 3] Assume that (A1)-(A5) hold. Let {u,w} be the solution of (P) on
[0, 4+00). Then,

u—u™ € L*0,+o00; H'(=1,1)), wu € L®(0,+o0; H'(—1,1)), (2.5)
i‘;g |Ut|L2(t,t+1;L2(—1,1)) < —+00, (2.6)

w € L(0, +o0; HX(—1,1)), (2.7)
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wy € L®(0, +o0; H'(=1,1)) N L*(0, +00; H*(—1,1)*) (2.8)

and
sup lwe |2 (¢ 1,01 (<1,1)) < 00 (2.9)

From this theorem, we have the following corollary.

Corollary 2.1. [¢f. 3] Under the same assumptions as in Theorem 2.2, the following

statements hold:

(a) u(t) — u®(= h>) weakly in H'(—1,1) ast — +oo.

(b) The w-limit set w(ug, wp) is non-empty, compact and connected in H'(—1,1). Also,
w(ug,wo) is bounded in H*(—1,1).
li K 2 ! 1 4 1 1 0 )\ 2 d .

(©) Jim {SwaBacn + [ (Goa)! = 50 +u*)(w(t,2)?) o} esists

t—+4oc0o

(d) Any w-limit function v € w(uo, wo) s solution of (P)™.

From this corollary, the absolute temperature ——(—tj converges to a constant ———. On

U u* ;
the other hand, in general the order parameter w(t) does not converge, but any w-limit
function of w(t) is a solution of (P). So, in the next section we consider the structure of

the solutions of (P)™ and w -limit set w(uo,wo).

3. The structure of w-limit set w(ug, wo)

In this section, we consider the structure of the solution of (P)™ and w(ug, wo). Here,
we note that the shape of the function w® — (1 + u™)w chages as u™ changes. From this
results and (a) of Corollary 2.1, we consider u®(= h*) as a controll parameter.

For simplicity, we use the following notations:
G(w;u™) = / {v® = (1 +u>)v}dv
0

and
H(w;o,u®) = / {v° — (1 + v®)v — o}dv = G(w;u™®) — ow.
0

Lemma 3.1. [cf. 3] Let w™ be any solution of (P)* and put b = H(w™(—1);0,u*™).
Then, H(w™(z);0,u®) > b for all x € [-1,1].

Moreover, w>(z) = 0 if and only if H(w*(z);0,u™®) = b, hence H(w™(1);0,u>) = b.
Proof. Multiplying (1.8) by wS and integrating it over [—1, z], from (1.11) we have

—%|wﬂ°:°(:c)|2 + H(w™(z);0,u®) =b forall z € [-1,1].
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Hence, this lemma holds. $.

Next, since there exist two cases of the shape of the function w® — (1 +u*)w, we consider

the two cases one by one.

(i) Case 1: u*® < —1

In this case, w® — (1 + u®)w is strictly increasing. So, there exists one and only one

solution ((o) of the algebraic equation w* — (1 + u*)w = o, that is, H(w; o,u) has the

following properties:
H(w; o,u®™) is strictly decreasing on (—o0,((0)),

H(w; o, u™) is strictly increasing on ({(¢), +0o0)

and

H(w; o, u°0) > H(((o);0,u™).

Theorem 3.1. (P)™ has no non-constant solution.
Proof. We assume that w™ is a non-constant solution of (P)™.
Then, from Lemma 3.1 and the properties of H(w;o,u™) we can see that there exist two
following cases («) and (8) for w*.

(o) w?(-1) < ((0) and w*™ is decreasing on [—1,1].

(8) w*(-1) > ((o) and w* is increasing on [—1,1].
In both cases («) and (3) we have w2 # 0 on (—1,1] which contradicts the boundary
condition w(1) = 0. Therefore, we obtain this theorem. &

From Theorem 3.1, we can see that the following theorem, easily.

Theorem 3.2. (P)* has a constant solution v = mq on [—1,1], only.

Moreover, o = G(mo; u™) and b= (1 — mg)G(me; u™).

Proof. From (1.12), w® = mg on [—1,1] must hold. Since —0.5 < mq < 0.5, {* =0 on
[-1,1]. So,

1 gt
o = §/1{50"—1~mg——(l—l~u°°)mo}d:v

= my— (14 u™)mo = G(mg; u™)0.

Moreover,
b = G(mo;u™) — omg = (1 — mo)G(mo; u™). .

Remark 3.1. From Corollary 2.1 and 3.2, the order parameter w(t) converges w™ = mq

as t — +00. So, there exists one and only one w-limit set w(ug,wo) = {w™}.

- Case 2: —1 <u® <0
In this case, w® — (1 + u®)w is non-monotone and N-shape. So, we consider the case
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when mg = 0.

Here, We note that there exist two cases for the position of constraints —0.5 and 0.5.
First case, when —0.75 < u® < 0, these constraints are outside of zero points of

w® — (1 4+ u™)w, that is,

—05 < —vV14+u® <0< VI +u* <05
Second case, when —1 < u®™ < —0.75, they are inside, that is,

—/14+u* < —-05<0<0.5<vV1+u=e.

At first, by using the same technique as in Theorem 3.2, we obtain the following the-
orem about a constant solution.

Theorem 3.3. (P)* has one and only one constant solution w™ =0 on [—1,1]. More-

over, in this case 0 = b= 0.

In the rest of this case, we consider non-constant solutions of (P)®. To do so, we note
that there exist three following cases of the shape of the function H(w; o, u*) by the value
of o.

1+ u™

3
(a) When o > 2( )2, H(w; o,u™) has the following properties:

H(wj;o,u™) is strictly decreasing on (—o0, (4 (o)),

H(w; o,u™) is strictly increasing on ((+(o),+o0)

and v
H(w;o,u™) > H((1(0); 0,u™),

where (. (o) is a root of the algebraic equation w® — (1 + u®)w = ¢ such that

(o) > - (”3“”)%-

3
I +u>\2 : :
+u )2, H(w;o,u™) has the following properties:

(b) When o < —2(
H(w;o,u™) is strictly decreasing on (—o0,(_(0)),

H(w;o,u™) is strictly increasing on ({~(c),+o0)
and

H(w;o,u™®) > H((_(0); 0,u>),

where (_(o) is a root of the algebraic equation w® — (1 + u®)w = o such that

o= (5!
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(c) When —2( +3u ) <o < 2( +3u > , H(w; o,u*) has the following properties:

H(w; o,u™) is strictly decreasing on (—oo,(_(c)) U ({(o), ¢+ (o))
and
H(w; o,u™) is strictly increasing on ({~(c),{(c)) U ({+(0), +0),
where (_(o), ((¢) and (4 (o) are roots of the algebraic equation w® — (1 +u®)w = o

such that (_(0) < — <1 _|_3u°°>5 < ((o) < (1 +3u°0>5 < (4 (sigma).

To the cases (a) and (b), by using the same technique as in Theorem 3.1, we can see

that the following theorem holds.

wWiw

3
1 N 2 1 e
Theorem 3.4. We assume that o < —2( +3u )2 or o > 2( —1—3u ) . Then, (P)”

has no non-constant solution.

From this theorem, we only consider the case (c). In this case, by the results of A. Ito &
N. Kenmochi [6], we know that the following theorem holds.

Theorem 3.5. Let w™ be non-constant solution of (P)*. Then,
(1) o =0. |

(2) If =0.75 < u™ < 0, then all w-limit set w(ug, wo) 1s a singleton, that is, w(ug, wy) =
{w™}. Moreover, the number of w(ug,wy) is equal to 2ny + 1, where ny is the
number of b with G(—v/1+ u®;u*®) = G(V1+u=;u®) < b < 0 satisfying the
following condition (*):

(*) There exist a natural number N(b) such that N(b)I(b) = 2,

where £1(b) are roots of the algebraic equation G(w;u>) = b such that —/1 + u> <
—n(b) <0< n(b) <1+ u>® and

1) = (g) /_::) (G(w; ul°°) gy

(8) If =1 < u® < —0.75, there exist two posibilities (i) and (i) of the structure of

w(ug, wo):

(1) w(uo,wé) is a singleton.

(i1) w(uo,wo) contains a continuum of the solutions of (P). Moreover, in this case
the following properties hold:

(a) b= G(-0.5;u>) = G(0.5;u>).
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(B) n(b) = 0.5. Hence, in particular boundary values w™(—1) and w*>(1) take
—0.5 or 0.5.

(v) |JB| = |Ja|, where |J4| and |JB| are the length of the pure region of the
components A and B, respectively.

Moreover, the nunber of w(ug, wo) is equal to 2nq + 2ny + 1, where ny is the number
of b with G(—0.5;u>) = G(0.5;u>) < b < 0 satisfying (*) and ny is the number of
the natural number n satisfying the following conditions (**):

(**) nI(G(=0.5;u™)) = nI(G(0.5;u>)) < 2.

From this theorem, we are interested in the case when (ii) of (3).
But, this case is very dependent upon the coefficient «.
At last, we give the theorem to show that w-limit set is very dependent upon .

Theorem 3.6. If k is large enough to satisfy the follmbing codition (**)
21(G(0.5;u™)) > 2.

Then, all w-limit set are singleton, that is, the order parameter w(t) converges to some
w-limit function w*> ast — 4oo.

Proof. It is clear from the above theorem. : O

Remark 3.2. We can see that w-limit set is very dependent upon the length of the

interval when & is fixed.
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