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ON THE NUMBER OF COMPLEX POINTS OF A SURFACE
IN AN ALMOST COMPLEX 4-MANIFOLD

B K BHEBF (il  #— (YuicHi YAMADA)

EHE 4 RTEBERSBENICIIDATh 2RITCHAMEOBORZEH. HES
DOMEEICBEL TR D N2 2 D2DAREEZ 5, FHT. Th o mEfHiFAsedhmicst U
Tdmod2 LB EMRKERDIMNDIEICHEKELD, 2D2DAKEIZ (Y195 T%
FEWRUARX (1) &0 [W1,284] TRINAARK (2) THBE (FXBE), (2)
i3 [BF'93] i2 &k . C* AOBFMMPEDBZEICOVTIE. REERIZXBBENEZ S
Nz, [Y2] TEZHRZZThE—ROFE~M -7 (4. 5). TITRNTHEH Ok
DHEEENERBLFIAT S, £/ 22AKOBAT, [Fo'92] OHLMEICEZ B &
NTEB (3)

Throughout this paper, we will work in the C* category. Let M be a connected
oriented 4-manifold, F' a closed and connected surface of Euler characteristic x(F).
We allow that F'is non-orientable. For a given immersion f of F into M with only
normal crossings, let e(f) be the normal Euler number of it, and let f.[F] be the
element in Ho(M; Z,). | |

(1) An Extension of Whitney’s Congruence.
We are interested in the relation between e(f) and f,[F].
Definition 1. A map ¢ from Hy(M,Z,) to Z, is Z4 quadratic iff g satisfies

g(a+pB) = q(a) + ¢(8)+2(ae f) mod 4,

where o is ( Z3-valued ) intersection form on Hz(M;Z,), and 2: Zy — Zg4 is the

natural embedding.

In [Y1], we extended Whitney’s congruence as follows.
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For some time, we assume that M is closed and H,(M;Z) = {0}. We will
define a Z,-quadratic map ¢ from Hy(M;Z,) to Z, as follows. By the assump-
tion H,(M;Z) = {0}, the mod 2-reduction map p; from Ho(M;Z) to H2(M;Z,) is

surjective. For a given element a in Hy(M;Z;) , we define g(a) by
¢la)=aoa mod 4,

where & is an element of p, “'(a) and o is the intersection form on Hy(M;Z). The

well-definedness of ¢ is easy to see, and ¢ 1s Z4-quadratic.

Example 1. When M is CP%, Hy(CP?;Z;) = Zza and ¢(0) =0, ¢(a) = 1.

Our theorem is,

Theorem 1. [An Extension of Whitney’s Congruence]

Under the assumption on M above,

e(f) + 2x(F) + 2fsel f(f) = q(f«[F]) mod 4,
where fself(f) is the number of self-intersection points of f(F).

In general case in which the only assumption on M is its orientability (We assume

that M is neither closed nor compact), we have

Theorem 1°. A map which assigns e(f)+2x(F') mod 4 to an embedding FF C M
induces a Zy-quadratic map from Hy(M;Z3) to Zy. We will also call it q.

Remark 1. Many researchers study on Whitney’s congruence and its extension.

(see [A],[L] and [SS])

(2) Webster’s Formula.

Let (M, J) be an almost complex manifold of real dimension 4. Let f: F' —
(M, J) be a “generic” immersion, whose definition can be find in ([W2]or[BF]).

A point z € F is called a complex point of f iff f,T,F = J(f. T, F) ([Bi]). By

the assumption that f is generic, every complex point is isolated. We let C(f) denote



163

the set of all complex points of f. We are concerned with the number of complex
points of f.

In [W1,2], S.M.Webster has shown the next formula by comparing the index
sum of zeros of a section v on TF with those of mJ f«v on NF, where TF(and
N F respectively) is the tangent (normal) bundle over F' and 7 is the projection onto

the second factor of f*TM =TF @ NF.

Theorem 2. [Webster’s Formula] ([W1,2])
Let (M, J) be a complez 2-manifold and F' be a closed Surface. We allow that F
is non-orientable. For a “generic” immersion f: F — (M, J), we have
(N +xF)= 3 dz) inZ.
z€C(f)

where €(z) 15 a certain indez (£1) of a point bof c(f)-

This formula was studied by many authors from various aspects (see [IO] and its
rich references). In [BF], which is the main reference of [Y2], T.Banchoff and 1‘F‘.Farris
reproved the formula explicitly in the case in which F is oriented and M = C?
by applying an elementary intersection theory of a surface and a 2-complex in the
Grassmannian G(2,4). In [Y2], we supplemented their method into the general case.
In fact, we study the transformation of the G(2,4) (& 5% x.5?) bundle over M explicitly
using H, and we develop an intersection theory for non-orientable surfaces without
taking modulo 2. In this article, we introduce the former in section (4) and the latter

in section (5).

(3) Totally real non-orientable surface in CP2.

- Definition 2. A immersion f: F — (M, J) is called totally real iff C(f) = é.

Comparing two formulae

(1) e(f) +2x(F) + 2fself(f) = g(f«[F]) mod 4, and
(2) e(f)+x(F)= ) e=),

zeC(f)
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we have the following.

Theorem 3. [A Formula for totally real immersion]
Let (M, J) be an almost complez 2-manifold and f: F — (M, J) a totally real

immersion of a closed Surface. We allow thet F' is non-orientable. Then

X(F) + 24self(f) = q(f[F) = D e(z) mod4.

zeC(f)

In particular, if f: F — (M,J) is a totally real embedding, x(F) = q(f«[F))
mod 4.

Example 2. Totally real embedded (non-orientable) surface F' in CP? satisfies
x(F) = 0orl mod 4. This is the answer for the last sentence of [Fo].

(4) The Transformation of G(2,4) bundle over M.

This section is a part of [Y2], which is a step to supplement [BF]’s alternative
proof to the case in which M is in general.

Let V be an oriented real 4-dimensional vector space with a metric, i.e., a positive

definite inner product, and G(2,V) its Grassmannian manifold :
G(2,V) = {H : 2-dimensional oriented subspace of V'}.

It is known that G(2,V) is homeomorphic to S? x S? (see[CS]). We review it.
When we take an orthonormal oriented basis e = {e1,e2,€e3,€4}, an element H €
G(2,V) can be represented by ordered two vectors a = f: a;e; and b = i biei(a;,b; €
R) which span H. We set = =

Ty = pi2 + P34, Y1 = P12 — P34,
T2 = p13 + P42, Y2 = P13 — P42,

a; a;
T3 = P14 + P23, Ys = P14 — P23, Where Pij = det (bz b]> :
i Jj

Here we note that pia2pss + p13ps2 + p1apas = 0.
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Let ¢pe(H) = ([z1: 22 2 23], [y1 : y2 : 3]) € (R*\{0})/R>0 x (R*\{0})/R>o =
S% x 5?2, where [ : : | is the homogeneous coordinate. We note that ¢.(H) is well-
defined, i.e., it does not depend on the choice of a and b.

Remark 2. Our identification between G(2,4) and S* x S? is a little different
from the historic one ([CS]-[BF)).

From now on, we use the quaternion field H :
H={a=ay+ait +azj+ak|a; e R(:=10,1,2,3)}
and some standard identification as follows.

R* = H (naturally),
R> =ImH = {a=aji+ayj +ask|a; e R },
C? = H by (z0,2) e 20+ 217,
S% = the unit sphere of H,
which is a Lie group under the quaternionic multiple,
S' = the unit circle of C C H, which is an abelian closed subgroup of S°,
52 = S*nImH (S* ¢ S?).

We also identify (R?*\{0})/R>¢ and $? canonically.

The following proposition is well known.

Proposition 1. We have the following isomorphisms.

S3 x §3

p: ey — S0O(4),

PR ES (g {(O"i)(t’ss }) — S0(3),
w STxS?

P m— — U(2),

where p(a, B)(v) = awf™! for v e H. p'(a) = p(a,a) and p" is the restriction of p.
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When V is equipped with a complex structure J, a self linear map which sat-
isfys J2 = —id|y and is compatible with the metric of V, we take the basis e =

{e1,€e2, €3,€e4} such that e = Jej,eq = Jes.
Under the notation and identification above, We have the follwing lemma.

Theorem 4. [Explicit Transformation]

When e = {e1, ez, €3,€e4} and e = {e},€y,€e5, ey} are in the following relation,

ef =Y ajei, A=(a;)=p(a,f) € SO4),
¢e and ¢ satisfies the commutative diagram bellow.

G2, V) —2< s 52 x 52
H lp'(a)xp’(ﬂ)
G(2,V) —2= 5% x S

where p'(a) x p'(B) € SO(3) x SO(3) act on S? x S? factorwise.

Proof. This lemma can be proved only by some troublesome calculus. But here
we prove it by using quatenionic multiplication.

For an element H € G(2,V), when we take orthonormal two vectors a =
ﬁ: a;e;and b = _24: b;e;(a;,b; € R) which span H, and regard them as elements
in H. =

a=ag+ayi+azj+ask and b=by+ bit+ baj + b3k,

we have ¢.(H) = (—ab, —ba) by definition. Here the right-hand side is an element in
5% x S? because a and b are orthonormal, i.e., |a| = |b| = 1 and Re(ab) = Re(ba) = 0.

Under the other basis system €', a' and b’ corresponding to the above a and b

satisfy @' = a7 laf and ¥’ = o~ 1b0.

i

Thus ¢e(H) = (—a'd’, —b'd’)

(—a"tafa~1b8, —a~1bBa"'af)

I

(—a"aba, —B " bapB)
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We have the lemma. O

Remark 3. When V has a complex structure, we have A € U(2) (i.e., « € S?),
thus each of {i} x S? and {—i} x S? is kept invariant by the transformation. On
the orher hand, when €] = e;, we have A € SO(3) (i.e., a = f), thus each of A
and A is kept. invariant by the transformation, where A = {(X,X)|X € S?} and
A={(X,~X)|X €8} C8x S |

In [BF], they has shown the correspondence bellow,

In G(2,V) | In §? x 52
G, ={HeG2,V)|e1 € H} o A
G ={HeG2,V)|es LH} - A
C ={HeG2V)|H isspun by a and Ja } - {i} x5
C ={HeG?2,V)| —Hisspunbyaand Ja } o  {—i}xS?

Each of A, A, {1} x S? and {—i} x S? is homeomorphic to §2. We call the union of

them 45%. Here we note that 452 is a 2-boundary as a 2-chain complex.
The conclusion of this section is summerized as follows.

Lemma. When we are given an ezplicit transformation of TM, we can get that
of S% x 5?2 budle over M which is equivarent to the Grassmannien bundle G(2, TM)
over M by the explicit tmnsforma,tion lemma. |

When an almost complez manifold (M, J) has a unit tangent vector field eq, we
have the same correspondence as above under ¢.’s. (For ezample, G, (,y C G(2,T, M)
is corresponding to A € S? x S? under Pe(p)-)

For an immersed surface f(F'), we take a unit vector field e; around f(F). For
example, e; = Wi;—:%ll’ where ¢ is a Morse function on M which has no critical point
on f(F') and g o f is also a Morse function on F. Next, we take the generalized
Gaussian map Gf: F — G(2,TM) (z — f,T.F). Then Int(Gf,45%bundle) = 0

holds, because 452 is a boundary. Webster’s formula follows the equation.
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(5) A non-orientable Surface.

When F is non-orientable, we can not use G(2,TM) as the image of the general
Gaussian map. It may be easy to use the unoriented Grassmannian G4(2,TM) =
G(2,TM)/+ and treat the indexes by modulo 2. In fact, each G, and G} C
G+(2,TM) is homeomorphic to RP?  and C U IC’ to a S2. But, here we develop

an intersection theory of non-orientable surfaces without taking modulo 2.

GEOMETRIC PROOF of Webster formula (F' is non-orientable)

We use the following formula : If ¢.(H) = (X,Y) , then ¢.(-H) = (-X,-Y).
We write this formula as ¢, o (—1) = (—1,—1) 0o §.. Here we note that the involution
map (—1,—1) of $2x.5? is orientation preserving itself and carry our 45? to themselves
with orientation reversing.

Let p: F' — F be an orientable double covering of F and —: F' — F the involution
associate to the covering. Let U be a local coordinate of F', and suppose that Gf(U)
and 4.5%-bundle intersect only at (X,Y). When we let U denote a component p~1(U)
in F, p Y (U) consists of U; and —U,. We regard each of them as a coordinate
of F' via p. Those local orientations are opposite to each other. By the previous
paragraph, Gf(—Uy) = (=1,-1)(G f(U4)). Thus Gf(F) and 45%-bundle intersect at

| (=X, -Y) and the index at the point does not change, because the one local situation
in G(2,TM) is homeomorphic to the other under (—1,—1) and both orientations of
the surfaces change. This may be the very reason why the index of a complex point

does not depend on the local orientation from our view point.

4 (-1,-1DGfU+
—r
('1"1)
as a self homeo Y
Gf(U+)
4S
Around an intersection Around (-1,-1)(X,Y)

point (X,Y)
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Finally, We must show that the algebraic index sum of those intersection points
is zero. Since f: F — (M, J) is a generic immersion, the composition f o p: F -
(M, J) is also a generic immersion. By applying’ the conclusion of the formula for an
oriented surface, the algebraic index sum of the intersection Int( G(fop), 452-bundle)
is zero. On the other hand, by the previous paragraph, the algebraic index sum of the
intersection of G f(F) with local orientation and 452-bundle is equal to 1Int( G(fop),
452-bundle), which is zero. We have the formula. O

BHHIZ ZOWMRZEHRDICE->NFES BRI SEONIFET LI, £
DFHKDOPTHOER [Y1] ZHHOEREZRE~DOHEDIIHAHDREIZFIAT S
TATTHEREINTOE Uic, £0%. A, RAMEKNSHX [I0] ZHEX, £ZT
FRbONED T EMF I ARRMEOHESOFEL L TAHEORKICEY LT, 3AD
FRICBRHK LET, bR EI T 0E LI
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