<table>
<thead>
<tr>
<th>Title</th>
<th>The second pluri-genus of surface singularities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Watanabe, Kimio; Okuma, Tomohiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1996, 952: 19-26</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60387</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The second pluri-genus of surface singularities

筑波大学数学系 渡辺公夫 (Kimio Watanabe)
筑波大学数学研究科 奥間智弘 (Tomohiro Okuma)

1 Preliminary

Let \((X, x)\) be a normal \(n\)-dimensional isolated singularity over \(\mathbb{C}\) and \(f \colon (M, E) \rightarrow (X, x)\) a resolution of the singularity \((X, x)\) with exceptional locus \(E = f^{-1}(x)\). We say a resolution \(f\) is good if \(E\) is a divisor of normal crossings. Then the \(m\)-th \(L^2\)-plurigenus of \((X, x)\) is an integer \(\delta_m(X, x)\) which was introduced in [5] and can be computed as

\[
\delta_m(X, x) = \dim_{\mathbb{C}} \frac{H^0(M - E, \mathcal{O}_M(mK))}{H^0(M, \mathcal{O}_M(mK + (m-1)E))},
\]

where \(K\) denotes the canonical divisor on \(M\).

The invariant \(p_g(X, x)\) called the geometric genus of a singularity \((X, x)\) is defined by

\[
p_g(X, x) = \dim_{\mathbb{C}} (R^{n-1}f_* \mathcal{O}_M)_x.
\]

We note that \(p_g(X, x) = \delta_1(X, x)\).
Normal surface singularities are classified as the following theorem.

(1.1) THEOREM[1, Theorem 5.4]. For a normal surface singularity (X, x), we have the following:

1. $\delta_m(X, x) = 0$ for all $m \in \mathbb{N}$, when (X, x) is a quotient singularity;
2. $\delta_m(X, x) \leq 1$ for all $m \in \mathbb{N}$ and $\delta_n(X, x) = 1$ for some $n \in \mathbb{N}$, in one of the following cases;
 (a) (X, x) is a simple elliptic singularity;
 (b) (X, x) is a cusp singularity;
 (c) (X, x) is the quotient by a finite group of a singularity of type (a) or (b);
3. $0 < \limsup_{m \to \infty} \delta_m(X, x)/m^2 < \infty$, in other cases.

(1.2) DEFINITION. A normal surface singularity (X, x) is of general type if which is in the class (3) above.

(1.3) DEFINITION. A normal surface singularity (X, x) is minimally elliptic if $p_g(X, x) = 1$ and (X, x) is a Gorenstein singularity.

2 The minimally elliptic singularities

Throughout this section, we assume that (X, x) is a minimally elliptic singularity, $f : (M, E) \to (X, x)$ the minimal good resolution with the irreducible decomposition $E = \bigcup_{i=1}^{k} E_i$ and K the canonical divisor on M.
which is supported on E.

Then $-K \geq E$, and $-K = E$ if and only if (X, x) is a simple elliptic or a cusp singularity. If (X, x) is not a simple elliptic singularity, then $E_i \cong \mathbb{P}^1$ for all i.

(2.1) **Definition.** Let Z be the fundamental cycle on M. We say the dual graph of E is obtained from another singularity (X', x') if the self-intersection number of the fundamental cycle of (X', x') is -1 and the weighted dual graphs of (X, x) and (X', x') are same except for self-intersection numbers of the components of E with multiplicity 1 in Z.

In [6], we have followings.

(2.2) **Theorem.** For a minimally elliptic singularity (X, x),

$$\delta_2(X, x) = \dim \mathcal{H}^2(M, \mathcal{O}_M(2K + E)).$$

If (X, x) is of general type, $\delta_2(X, x) = KD + 2$, where $D = -K - E$.

(2.3) **Corollary.** If (X, x) is a hypersurface (resp. complete intersection), then $\delta_2(X, x) \leq 4$ (resp. 5).

(2.4) **Proposition.** Let (X, x) be a minimally elliptic singularity of general type. Then $\delta_2(X, x) = 1$ (resp. 2) if and only if (X, x) is obtained from a unimodal (resp. bimodal) singularity, and f is good if and only if
\[\delta_{2}(X, x) \geq 2. \]

Question. Does the inequality \(\delta_{2} \geq m(X, x) \) (\(m(X, x) \) denotes the modality of a hypersurface singularity) hold?

That holds for quasi-homogeneous hypersurface singularities (see [7]).

3 The equisingular deformations

We follow the notation and terminology of the second section. We always assume that \((X, x)\) is a minimally elliptic singularity.

Let \(ES \) be the equisingular deformation functor in the sense of [3]. By [2], an equisingular deformation of \(M \) induces a topologically constant deformation of a singularity \((X, x)\).

By [3], \(ES \) is smooth and the tangent space of \(ES \) is \(H^{1}(M, S) \), where \(S = \mathcal{H}_{\mathcal{O}M_{\circ} \mathcal{O}_{M}}(\Omega^{1}_{\mathcal{M}}(logE), \mathcal{O}_{M}) \) (which is a locally free sheaf of rank 2).

Definition. We define an invariant \(q(X, x) \) called *irregularity* by

\[
q(X, x) = \dim_{\mathbb{C}} H^{0}(M - E, \Omega^{1}_{M - E}) / H^{0}(M, \Omega^{1}_{M}).
\]

If \((X, x)\) is a simple elliptic or not a quasi-homogeneous singularity, then \(q(X, x) = 0 \), and \(q(X, x) = 1 \) for every other (cf. [4, Theorem 1.9]).

We denote by \(h^{i}(\cdot) \) (resp. \(h^{1}_{E}(\cdot) \)) the dimension of \(\mathbb{C} \)-vector space \(H^{i}(\cdot) \) (resp. \(H^{1}_{E}(\cdot) \)).
(3.2) Proposition. If (X, x) is of general type, then

$$h^1(S) = q(X, x) + h^0(D, \Omega^1_M(\log E) \otimes \mathcal{O}_D(-E)),$$

where $D = -K - E$.

Proof. By the duality, $h^1(S) = h^1_E(\Omega^1_M(\log E) \otimes \mathcal{O}(K))$. By Wahl's vanishing theorem, $h^1(\Omega^1_M(\log E) \otimes \mathcal{O}(K)) = 0$. Hence we have

$$h^1_E(\Omega^1_M(\log E) \otimes \mathcal{O}(K)) = \dim \mathbb{C}H^0(M-E, \Omega^1_M(1+E)) / H^0(\Omega^1_M(\log E) \otimes \mathcal{O}(K))$$

and

$$h^0(D, \Omega^1_M(\log E) \otimes \mathcal{O}_D(-E)) = \dim \mathbb{C}H^0(M-E, \Omega^1_M(1+E)) / H^0(\Omega^1_M(\log E) \otimes \mathcal{O}(K)).$$

From the exact sequence

$$0 \rightarrow H^0(\Omega^1_M(\log E) \otimes \mathcal{O}(-E)) \rightarrow H^0(\Omega^1_M) \rightarrow H^0(\oplus \Omega^1_E) = 0,$$

and inclusions

$$H^0(\Omega^1_M(\log E) \otimes \mathcal{O}(K)) \subseteq H^0(\Omega^1_M(\log E) \otimes \mathcal{O}(-E)) \subseteq H^0(\Omega^1_M) \subseteq H^0(M-E, \Omega^1_M),$$

we have the assertion of the proposition.

In a similar way as above, we have $h^1(S) = 1$ for simple elliptic singularities and $h^1(S) = 0$ for cusp singularities.
(3.3) Example. Let \((X, x)\) be of general type and \(E = \bigcup_{i=0}^{r} E_i\) the irreducible decomposition. Assume that dual graph of \(E\) is star-shaped such that \(E_0 E_i = 1\) for \(i = 1, \ldots, r\), \(E_i E_j = 0\) if \(1 \leq i < j \leq r\) and \(E_0^2 = -r + 2\).

Then \(K = -2E_0 - \sum_{i=1}^{r} E_i\), and \(D = -K - E = E_0\). Hence \(\delta_2(X, x) = KD + 2 = r - 2\).

There is an isomorphism

\[\Omega^1_M(logE) \otimes \mathcal{O}_{E_0}(-E) \cong \mathcal{O}_{E_0}(-4 + r) \oplus \mathcal{O}_{E_0}(-2).\]

By (3.2), \(h^1(S) = q(X, x) + r - 3\). Hence \(\delta_2(X, x) = h^1(S) - q(X, x) + 1\).

If \((X, x)\) is a quasi-homogeneous hypersurface singularity, and moreover if the invariance of Milnor's number implies the invariance of the topological type, then \(\delta_2(X, x) = m(X, x)\).

By [4, (1.5),(1.6)], the exterior differentiation gives an exact sequence

\[0 \to d\mathcal{O}(K) \to \Omega^1_M(logE) \otimes \mathcal{O}(K) \to \Omega^2_M \otimes \mathcal{O}(K + E) \to 0\]

and isomorphisms \(H^i(\mathcal{O}(K)) \cong H^i(d\mathcal{O}(K))\) for all \(i\), where we consider \(\mathcal{O}(K)\) an ideal sheaf of \(\mathcal{O}_M\). Therer is an exact sequence

\[0 \to H^0(d\mathcal{O}(K)) \to H^0(M - E, d\mathcal{O}) \to H^1_E(d\mathcal{O}(K)) \to H^1(\mathcal{O}(K)) \cong H^1(\mathcal{O}(K)) = 0.\]

If \((X, x)\) is of general type, then \(H^1_{\{x\}}(d\mathcal{O}_X) = 0\) by [4,(1.13.4)]. Hence
$H^0(X, d\mathcal{O}_X) \cong H^0(M - E, d\mathcal{O})$, and the map $H^0(d\mathcal{O}(K)) \to H^0(M - E, d\mathcal{O})$ is surjective. Hence $H^1_E(d\mathcal{O}(K)) = 0$.

By the exact sequence

$$
H^1_E(d\mathcal{O}(K)) \to H^1_E(\Omega^1_M(\log E) \otimes \mathcal{O}(K)) \to H^1_E(\mathcal{O}(2K + E))
$$

$$
\to H^2_E(d\mathcal{O}(K)) \to H^2_E(\Omega^1_M(\log E) \otimes \mathcal{O}(K)),
$$

we have $\delta_2(X, x) = h^1(S) + \alpha$ for the singularity (X, x) of general type, where

$$\alpha = \dim \ker(H^2_E(d\mathcal{O}(K)) \to H^2_E(\Omega^1_M(\log E) \otimes \mathcal{O}(K))).$$

REFERENCES

