SOME REMARKS ON THE DUGUNDJI EXTENSION THEOREMS

岛根大学総合理工 服部泰直 (Yasunao Hattori)
静岡大学教育学部 大田春外（Haruto Ohta）

1. Results that are known or easily proved

Let X be a space, A a closed subspace of X and Z a locally convex linear topological space. Let $C(X, Z)$ be the linear space of all continuous mappings from X to Z. A linear transformation $u : C(A, Z) \to C(X, Z)$ is said to be a Dugundji extender if u satisfies the following conditions: For each $f \in C(A, Z)$,

(a) $u(f)$ is an extension of f, and

(b) the range of $u(f)$ is contained in the closed convex hull of the range of f.

The study of this area is initiated by Dugundji [2]. He proved that for every closed subspace A of a metrizable space X there exists a Dugundji extender $u : C(A, \mathbb{R}) \to C(X, \mathbb{R})$. Michael ([8]) noticed that the Dugundji extender constructed by Dugundji is continuous with respect to the pointwise convergence topology, the compact-open topology and the uniform convergence topology.

We shall consider the Dugundji extention theorems on product spaces.

Definition 1.1. Let X be a space, A a closed subspace of X and Z a locally convex linear topological space. Then we say that A is $D(Z)$-embedded in X if there is a Dugundji extender $u : C(A, Z) \to C(X, Z)$. Furthermore, we say that A is D-embedded in X if A is $D(Z)$-embedded in X for every locally convex linear topological space Z.

Definition 1.2. Let X be a space, A a closed subspace of X and Z a locally convex linear topological space. Then we say that A is $\pi_D(Z)$-embedded in X if for every space Y there is a Dugundji extender $u : C(A \times Y, Z) \to C(X \times Y, Z)$. Furthermore, A is said to be π_D-embedded in X if A is $\pi_D(Z)$-embedded in X for every locally convex linear topological space Z.

Definition 1.3. Let X be a space, A a closed subspace of X and Z a locally convex linear topological space. Then we say that A is continuously $\pi_D(Z)$-embedded (resp. π_D-embedded) in X if we can choose the Dugundji extender u as is continuous with respect the pointwise convergence topology, the compact-open topology and the uniform convergence topology.

For a space X and a locally convex linear topological space Z we denote $C_u(X, Z)$ the linear topological space of all continuous mappings from X to Z with the uniform convergence topology, i.e., the sets of the form $V(f) = \{g \in C(X, Z) : g(x) - f(x) \in V\}$, where V is a neighborhood of the origin of Z consists a basic neighborhoods of $f \in C_u(X, Z)$. Let $C_{co}(X, Z)$ be the linear topological space of all continuous mappings from X to Z with the compact-open topology.
A mapping \(f : X \to Y \) is called a \(Z\)-map if \(f(Z) \) is closed for every zero-set \(Z \) of \(X \). Then we have the following.

Theorem 1.1. Let \(X \) and \(Y \) be spaces and \(A \) a \(D\)-embedded subspace of \(X \). Let \(p_A : A \times Y \to A \) and \(p_Y : A \times Y \to Y \) be the projections. If either of the following conditions is satisfied, then \(A \times Y \) is \(D\)-embedded in \(X \times Y \):

1. \(p_A \) is a \(Z\)-map.
2. \(p_Y \) is a \(Z\)-map and there is a continuous Dugundji extender \(u : C_u(A, Z) \to C_u(X, Z) \) for every locally convex linear topological space \(Z \).

Theorem 1.2. ([4]) Let \(X \) and \(Y \) be spaces, \(A \) a closed subspace of \(X \) and \(Z \) a locally convex linear topological space. Suppose that \(X \) is locally compact or \(X \times Y \) is a \(k\)-space. If there exists a continuous Dugundji extender \(u : C_{\omega}(A, Z) \to C_{\omega}(X, Z) \), then \(A \times Y \) is \(D(Z)\)-embedded in \(X \times Y \).

Remark. In Theorem 1.2, the continuity of the Dugundji extender \(u \) can not be dropped. In fact, let \(X = [0, \omega_1] \times [0, \omega) - \{(\omega_1, \omega)\} \) and \(A = [0, \omega_1] \times \{\omega\} \) be the closed subspace of \(X \). It is clear that \(A \) is \(D(\mathbb{R})\)-embedded in \(X \). Let \(Y = [0, \omega_1] \) be the space with the following topology: For each \(y < \omega_1 \) \(y \) is an isolated point of \(Y \) and \(\omega_1 \) has a neighborhood base of the usual order topology. It follows that \(A \times Y \) is not \(C\)-embedded in \(X \times Y \), and hence \(A \times Y \) is not \(D(\mathbb{R})\)-embedded in \(X \times Y \).

In [9] and [10], Stares proved that every closed subspace of spaces satisfying the decreasing \((G) \) is \(\pi\)-embedded and every such space has the Dugundji extension property. Before stating the theorem, we recall the definition of spaces satisfying the decreasing \((G) \) from [1]. Let \(\mathcal{W} = \{W(x) : x \in X\} \) be a collection of subsets of \(X \), where \(\mathcal{W}(x) = \{W(x, n) : n \in \omega\} \) such that \(x \in W(x, n) \) for every \(x \in X \) and \(n \in \omega \). Then we say that \(\mathcal{W} \) is decresing if \(W(x, n + 1) \subset W(x, n) \) for every \(n \in \omega \), and \(\mathcal{W} \) satisfies \((G) \) if

\((G) \) for each \(x \in X \) and each open set \(U \) with \(x \in U \) there is an open neighborhood \(V = V(x, U) \) of \(x \) such that \(y \in V \) implies \(x \in W(y, s) \subset U \) for some \(s \in \omega \).

We say that a space \(X \) satisfies the decreasing \((G) \) if there is a collection \(\mathcal{W} = \{W(x) : x \in X\} \) satisfying decreasing \((G) \). We notice that every stratifiable space satisfies the decreasing \((G) \) ([10]). Now, we have the following.

Theorem 1.3. Let \(X \) be a regular space satisfying the decreasing \((G) \) and \(A \) a closed subspace of \(X \). Then \(A \) is continuously \(\pi_D\)-embedded in \(X \).

2. **Results about GO-spaces**

In [7], we proved that for a perfectly normal GO-space \(X \) with \(E(X) \) is \(\sigma\)-discrete in \(X \), a closed subspace \(A \) of \(X \) and \(Z \) a locally convex linear topological space \(Z \), there is a Dugundji extender \(u \) from \(C(A, Z) \) to \(C(X, Z) \), where \(E(X) = \{x \in X : (\leftarrow, x] \) or \([x, \rightarrow) \) is open in \(X \} \). We extend the theorem above as follows.

Theorem 2.1. Let \(X \) be a perfectly normal GO-space such that \(E(X) \) is \(\sigma\)-discrete in \(X \). Then every closed subspace \(A \) of \(X \) is continuously \(\pi_D\)-embedded in \(X \).
Theorem. Let A be a closed subspace of X. Then $X - A$ is the union of a disjoint family \mathcal{U} of convex components of $X - A$. Since X is perfectly normal, it follows from [3, Theorem 2.4.5] that \mathcal{U} is σ-discrete in X. Let $\mathcal{U} = \bigcup_{n=1}^{\infty} \mathcal{U}_n$, where \mathcal{U}_n is discrete in X. Similarly, let $\mathcal{V} = \bigcup_{n=1}^{\infty} \mathcal{V}_n$ be a disjoint and σ-discrete family of convex components of $\text{Int } A$. For each $U \in \mathcal{U}$ we choose $x(U) \in U$. We put $M_U = \{x(U) : U \in \mathcal{U}\}$. For each convex open set C in X, we put
\[
\mathcal{L}(C) = \{a \in A : a < x\text{ for all } x \in C\},
\]
and
\[
\mathcal{R}(C) = \{a \in A : a > x\text{ for all } x \in C\},
\]
if the right-hand of the above equations exist.

Then for each n, we put $\mathcal{U}_n^L = \{U \in \mathcal{U}_n : l(U) \text{ exists}\}$ and $\mathcal{U}_n^R = \{U \in \mathcal{U}_n : r(U) \text{ exists}\}$.

Similarly, we define \mathcal{V}_n^L and \mathcal{V}_n^R. Furthermore, we put
\[
\mathcal{L}_n = \{l(U) : U \in \mathcal{U}_n^L\},
\]
\[
\mathcal{R}_n = \{r(U) : U \in \mathcal{U}_n^R\},
\]
\[
\mathcal{L}'_n = \{l(V) : V \in \mathcal{V}_n^L\},
\]
and
\[
\mathcal{R}'_n = \{r(V) : V \in \mathcal{V}_n^R\}.
\]

It is easy to see that all of $\mathcal{L}_n, \mathcal{R}_n, \mathcal{L}'_n$ and \mathcal{R}'_n are closed discrete in X. Let $L = \bigcup_{n=1}^{\infty} \mathcal{L}_n$, $R = \bigcup_{n=1}^{\infty} \mathcal{R}_n$, $L' = \bigcup_{n=1}^{\infty} \mathcal{L}'_n$ and $R' = \bigcup_{n=1}^{\infty} \mathcal{R}'_n$. Furthermore, we put
\[
B = \{a \in A : (L \cup R) : a \in \bigcup U^{-}(a) \cup U^{+}(a)\} \times
\]
where $U^{-}(a) = \{U \in \mathcal{U} : x(U) < a\}$ and $U^{+}(a) = \{U \in \mathcal{U} : x(U) > a\}$. Let
\[
M = M_U \cup L \cup R \cup L' \cup R' \cup (E(X) \cap A) \cup B.
\]

Then M is a GO-space and $D = M - B$ is σ-discrete in M. Since $E(M) \subset D$ and D is dense in M, it follows from [3, Theorem 3.1] that M is metrizable. Then there exists a compatible metric ρ on M bounded by 1.

We shall define a mapping $\varphi : X \rightarrow 2^A$. Let $x \in X$. If $x \in A$, then we put $\varphi(x) = \{x\}$. Let $x \in X - A$. Then there is $U \in \mathcal{U}_n$ such that $x \in U$.

Case 1. Suppose that $U \in \mathcal{U}_n \cap \mathcal{U}_m$. If $U = \{x\}$, we put $\varphi(x) = \{\ell(U)\}$. If U contains at least two points, we choose points $s(U)$ and $t(U)$ of U such that $s(U) < t(U)$. We put
\[
\varphi(x) = \begin{cases}
\{\ell(U)\}, & \text{if } x < s(U), \\
\{\ell(U), r(U)\}, & \text{if } s(U) \leq x \leq t(U), \\
\{r(U)\}, & \text{if } x > t(U).
\end{cases}
\]

Case 2. If $U \in \mathcal{U}_n$ and $U \notin \mathcal{U}_n$, then we put $\varphi(x) = \{\ell(U)\}$.

Case 3. If $U \notin \mathcal{U}_n$ and $U \in \mathcal{U}_n$, then we put $\varphi(x) = \{r(U)\}$.

Case 4. Finally, we suppose that $U \notin \mathcal{U}_n \cup \mathcal{U}_m$. Then we put $\varphi(x) = \{a(U)\}$, where $a(U)$ is defined in the proof of Theorem 2.1 in [7]. Then we can see that $\varphi : X \rightarrow 2^A$ is upper semicontinuous.

To define an extender $u : C(A \times Y, Z) \rightarrow C(X \times Y, Z)$, let $f \in C(A \times Y, Z)$. First, for each n and each $U \in \mathcal{U}_n$ we shall define a continuous function $f_U : U \times Y \rightarrow Z$. We consider the following four cases.
Case 1. Suppose that $U \in \mathcal{U}_{n}^k \cap \mathcal{U}_{n}^r$. If $U = \{x\}$, we define $f_{U}(x, y) = f(l(U), y)$ for each $y \in Y$. If U contains at least two points, we define

$$
f_{U}(x, y) = \begin{cases}
(1 - \psi_{U})(x) \cdot f(l(U), y) + \psi_{U}(x) \cdot f(r(U), y), & \text{if } x < s(U), \\
f(l(U), y), & \text{if } s(U) \leq x \leq t(U), \\
f(r(U), y), & \text{if } x > t(U),
\end{cases}
$$

for each $(x, y) \in U \times Y$, where $\psi_{U} : X \rightarrow I$ is a continuous mapping such that $(\leftarrow, l(U)] \subset \psi_{U}^{-1}(0)$ and $[r(U), \rightarrow) \subset \psi_{U}^{-1}(1)$.

Case 2. If $U \in \mathcal{U}_{n}^k$ and $U \notin \mathcal{U}_{n}^r$, then we put $f_{U}(x, y) = f(l(U), y)$ for each $(x, y) \in U \times Y$.

Case 3. If $U \notin \mathcal{U}_{n}^k$ and $U \in \mathcal{U}_{n}^r$, then we put $f_{U}(x, y) = f(r(U), y)$ for each $(x, y) \in U \times Y$.

Case 4. If $U \notin \mathcal{U}_{n}^k \cup \mathcal{U}_{n}^r$, $f_{U}(x, y) = f(a(U), y)$ for each $(x, y) \in U \times Y$.

We define a function $u(f) : X \times Y \rightarrow Z$ as follows:

$$u(f)(x, y) = \begin{cases}
f(x, y), & \text{if } x \in A, \\
f_{U}(x, y), & \text{if } x \in U \text{ for some } U \in \mathcal{U}.
\end{cases}
$$

In a similar fashion to [7], we can see that $u(f)$ is a continuous extension of f and the range of $u(f)$ is contained in the closed convex hull of the range of f.

By use of the upper semicontinuity of φ, we can show that the extender u above is continuous with respect to the point convergence topology, compact-open topology and uniform convergence topology (cf. [8]).

In a similar fashion as the proof of Theorem 2.1, we obtain the following (in fact, the proof of this case is more simple than Theorem 2.1).

Theorem 2.2. Let X be a GO-space, A a closed subspace of X and $X - A = \bigcup \mathcal{U}$, where \mathcal{U} is a disjoint family of convex components of $X - A$. If $\mathcal{U}' = \{ U \in \mathcal{U} : U \text{ has neither } l(U) \text{ nor } r(U) \}$ is discrete in X, then A is continuously π_{D}-embedded in X.

Corollary 2.1. Let X be a locally compact GO-space. Then every closed subspace A of X is continuously π_{D}-embedded in X.

Corollary 2.2. Every closed subspace of the Sorgenfrey line S is continuously π_{D}-embedded.

Corollary 2.3. Let X be a GO-space such that the underlining ordered set is well-ordered. Then every closed subspace A of X is continuously π_{D}-embedded.

Now, we have the following corollaries.

Corollary 2.4. Let $X_{i}(i = 1, 2, \cdots, n)$ be perfectly normal GO-spaces with $E(X_{i})$ σ-discrete in X_{i} and A_{i} are closed subsets in X_{i}. Then, $\prod_{i=1}^{n} A_{i}$ is D-embedded in $\prod_{i=1}^{n} X_{i}$.

Corollary 2.5. Let κ be an ordinal and $A_{i}(i = 1, 2, \cdots, n)$ are closed subsets of κ. Then $\prod_{i=1}^{n} A_{i}$ is D-embedded in κ^{n}.
Remark. In [5], Heath and Lutzer proved that for every closed subspace A of a GO-space X there is a simultaneous extender $u : C^*(A) \to C^*(X)$. However, Heath, Lutzer and Zenor [6] proved that there is no Dugundji extender $u : C^*(\mathbb{Q}) \to C^*(\mathbb{M})$ which is continuous when both function spaces are equipped with the compact-open topology nor the pointwise convergence topology, where \mathbb{M} is the Michael line and \mathbb{Q} is the subspace of \mathbb{M} consisting of all rationals.

REFERENCES

7. Y. Hattori, π-embeddings and Dugundji extension theorems for generalized ordered spaces, preprint.