Spaces having \sigma -compact-finite k-networks

Chuan Liu and Yoshio Tanaka

Department of Mathematics, Tokyo Gakugei University

Introduction

Every CW-complex, more generally, every space dominated by locally separable metric spaces has a star-countable k-network. Also, every Lašnev space has a σ -hereditarily closure preserving (abbr, σ -HCP) k-network, and every space dominated by Lašnev subspaces has a σ -compact-finite k-network. We recall that spaces with a star-countable k-network, and spaces with a σ -HCP k-network have σ -compact-finite k-networks.

Spaces with a star-countable k-network are investigated in [IT], [LT1], [LT3], and [S]. Spaces with a σ -HCP k-network are investigated in [L], and spaces with a compact-countable k-network in [LT3] and [LT2].

In this paper, we shall investigate spaces with a σ -compact-finite k-network and around these spaces, and their applications.

All spaces are regular and T₁, and maps are continuous and onto.

Definitions Let X be a topological space, and let \mathcal{W} be a collection of subsets of X. We recall that \mathcal{W} is compact-finite (star-countable) if for compact subset $K \subset X$ ($Q \in \mathcal{W}$), meets at most finitely (countably) many $P \in \mathcal{W}$. Let \mathcal{P} be a cover of X. Then \mathcal{P} is called a k-network for X, if whenever $K \subset U$ with K compact and U open, then $K \subset U$ for some finite $\mathcal{P} \subset \mathcal{P}$. Also, \mathcal{P} is called a cs*-network (cs-network) if whenever L is a sequence converging to a point $x \in X$ such that $x \in U$ with U open in X, then there exists $Y \in \mathcal{P}$ such that $x \in Y$, and

P contains a subsequence of L (L is eventually in P). If X has a σ -locally finite k-network (countable k-network), then X is called χ -space (χ 0-space).

Main Results

Theorem 1. Each of the following implies that Y has a σ -compact-finite k-network.

- (a) Y has a star-countable k-network.
- (b) Y has a σ -hereditarily closure-preserving k-network.
- (c) Y is dominated by spaces with a σ -compact-finite k-network.
- (d) Y is the closed image of a space X with a σ -compact-finite k-network, and one of the following properties holds.
 - (1) X is a k-space.
 - (2) X is a space with G₈-points.
 - (3) X is a normal, isocompact space.
 - (4) X is realcompact.
 - (5) Each $\partial f^{-1}(y)$ is Lindelöf.

Theorem 2. (CH) Let X be a k-space with a σ -compact-finite k-network. Then X is the topological sum of χ_0 -spaces iff X is locally separable.

Theorem 3. (1) Let X be a k-space with a σ -compact-finite k-network. Then X has a star-countable k-network iff every metric closed subset of X is locally separable.

(2) Let X be a sequential space with a σ -compact-finite cs*-network. Then X is the topological sum of χ_0 -spaces iff every metric closed subset of X is locally separable.

Theorem 4. (1) Suppose that X is determined by a point-countable cover of locally separable metric subsets. If X has a σ -compact-finite k-network, then X has a star-countable k-network.

(2) Suppose that X is determined by a point-countable closed cover of locally separable metric subsets. If X has a point-countable cs-network, then X is a locally \Re o-space.

Theorem 5. (1) Let X be a separable space. Then each of the following implies that X is an \Re_0 -space.

- (a) X is a Fréchet space with a point-countable k-network [GMT].
- (b) (CH) X is a k-space with a σ -compact-finite k-network. (If X is mata-Lindelöf, or χ (X) $\leq \omega_1$, (CH) can be omitted).
- (2) Let X be a cosmic space (i.e space with a countable network). If X has a point-countable cs-network, then X is an \Re_0 -space.

We recall canonical spaces S_{ω_1} , S_{ω} , and S_2 . S_{ω} is called the sequential fan, and S_2 is the Arens' space. S_{ω_1} ; S_{ω} is respectively the space obtained from the topological sum of ω_1 ; ω many convergent sequences by identifying all limit points to a single point.

Theorem 6. Let X be a k-space with a σ -compact-finite k-network. Then X is the quotient s-image of a metric space iff X contains no closed copy of S_{ω_1} .

Theorem 7. (CH) Let X be a k-space with a σ -compact-finite k-network, Then X is weakly first countable iff X contains no closed copy of S_{ω} .

Theorem 8. (CH) Let X be a k-space with a σ -compact-finite k-network. Then X is a Lasnev space iff X contains no closed copy of S_2 .

References

- [IT] Y. Ikeda and Y. Tanaka, Spaces having star-countable k-networks, Top. Proc., 18(1993), 107-132.
- [L] C. Liu, Spaces with a σ -hereditarily closure preserving k-network, Top. Proc., 18(1993), 179-188.
- [LT1] C. Liu and Y. Tanaka, Spaces with a star-countable k-network, and related results, to appear in Top, Appl.
- [LT2] -----, Spaces with certain compact-countable k-networks, and questions, Q & A in Gen. Top., 14(1996), 15-37.
- [LT3] -----, Spaces having star-countable or compact-countable k-networks, to appear
- [S] M. Sakai, On spaces with star-countable k-networks, to appear