0000000000
9550 1996 0 145-159 145

TWO TRANSFORMS OF PLANE CURVES
AND THEIR FUNDAMENTAL GROUPS

MuTsuo OkA

§1. Introduction. Let C’ ={(X;Y;27) € F(X,Y,Z) = 0} be a projective curve and let C* =
{f(z,y) = 0} C C? be the corresponding affine plane curve with respect to the affine coordinate
space C? = P? — {Z = 0}, « = X/Z, y = Y/Z and f(z,y) = F(z,y,1). In this paper, we
study two basic operations. First we consider an n-fold cyclic covering ¢, : C? — C2, on(z,y) =
(z,(y — B)" + B), branched along a line D = {y = B} for an arbitaray positive integer n > 2.

Let C,(C; D) be the projective closure of the pull back ¢;'(C?) of C*. The behavior of ¢, at
infinity gives an interesting effect on the fundamental group. In our previous paper [06], we have
studied the double covering ¢, to construct some interesting plane curves, such as a Zariski’s three
cuspidal quartic and a conical six cuspidal sextic. :

' Secondly we consider the following Jung transform of degree n, J, : C* — C™, J, (z,y) =
(z + y",y) and let J,(C; L) be the projective compactification of J7HC9). Though Jn is a
automorphism of C2, the behavior of J, or J,(C) at infinity is quite interesting.

Both of ¢, and J, can be extended canonically to rational mapping from P? to P? and they
are not defined only at [1;0; 0] and constant along the line at infinity L, = {Z = 0}. They have also
the following similarity. For a generic ¢, and a generic J,,, there exist surjective homomorphisms

B, : 1 (P? = Co(C)) » m(P? = 0), ¥, :m(P%— Tn(C)) — 1 (P? - C)

and both kernels Ker @, and Ker ¥,, are cyclic group of order n which are subgroups of the
respective centers of 71(P? — C,(C)) and 71 (P? — 7,(C)) (Theorem (3.5) and Theorem (4.3)).

Both operations are useful to construct examples of interesting plane curves, starting from
a simple plane curve. Applying this operation to a Zariski’s three cuspidal quartic Z,, we obtain
new examples of plane curves C,,(Z4) and J,.(Z,) of degree 4n whose complement in P? has a
non-commutative finite fundamental group of order 12n (§5). We will construct a new example of
Zariski pair {C3(Z,),C2} of curves of degree 12 (§5).

In §6, we study mon-atypical curves and their Jung transforms. We use a non-generic Jung
transform to construct a rational curve C of degree pq for any P, q with ged(p, ¢) = 1 such that C
has two irreducible singularities and the fundamental m; (P2 — C) is isomorphic to the free product
Z/pZ x Z/qZ (Corollary (6.6.1)). This paper is composed as follows.

§2. Basic properties of m; (P? — C) and Zariski’s pencil method.

§3. Cyclic transforms of plane curves.

84. Jung transforms of plane curves.

§5. Zariski’s quartic and Zariski pairs

§6. Non-atypical curves and some examples.
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§2. Basic properties of 71(P? — C) and Zariski’s pencil method. Let C be a reduced
projective curve of degree d and let C,...,C, be the irreducible components of C and let d; be
the degree of C;. So d =d; + --- + d,. First we recall that the first homology of the complement
is given by the Lefschetz duality and by the exact sequence of the pair (P2, (') as follows.

(2.1) H(P?-C)=Z"/(d1,...,d,) 22" ®Z/doZ

where dy = ged(ds, . ..,d,) and Z" = Z&®- - -®Z (r factors). In particular, if C isirreducible (r = 1),
we have H;(P? — C) 2 Z/dZ and H;(C? — C*) 2 Z where C? :==P? — L, and C°® := C N L.

(2.2) van Kampen-Zariski’s pencil method. We fix a point By € P? and we consider the
pencil of lines {L,, n € P} through By. Taking a linear change of coordinates if necessary, we may
assume that L, is defined by L,, = {X —9Z = 0} and By = [0;1;0] in homogeneous coordinates.
Take Lo, = {Z = 0} as the line at infinity and we write C> = P? — L. Note that Lo, =
lim, o Ly. We assume that Lo, ¢ C. We consider the affine coordinates (z,y) = (X/Z,Y/Z) on
C? and let F(X,Y, Z) be the defining homogeneous polynomial of C and let f(z,y) := F(z,y,1) be
the affine equation of C. In this affine coordinates, the pencil line L, is simply defined by {z = n}.
As we consider two fundamental groups m (P? — C) and m; (P2 — C' U L) simultaneously, we use
the notations : C% = CNC? and Ly =L, NC? =2 C. We identify hereafter L, and L7 with P! and
C respectively by y : L, = P! for  # oo. Note that the base point of the pencil By corresponds
to oo € P1L. ,

We say that the pencil L, = {z = 5}, n € C, is admissible if there exists an integer d' < d
which is independent of 7 € C such that C* N Lj consists of d' points counting the multiplicity.
This is equivalent to : f(z,y) has degree d' in y and the coefficient of ydl is a non-zero constant.
Note that if By ¢ C, L, is admissible and d' = d. If d' < d, By € C and the intersection multiplicity
I(C,Lo; Bo) =d —d'.

Proposition (2.2.2). (1) The canonical homomorphism jy : m(Ly — Ly N C%by) —
71 (C? — C%by) is surjective and the kernel Ker jy is equal to M and therefore m1(C* — C%; bo) is
isomorphic to the quotient group G/ M.

(2) The canonical homomorphism ¢y : w1 (C? — C%;by) — m1(P? — C;bo) is surjective. If By ¢ C
(so d' = d), the kernel Ker oy is normally generated by w =gq---g1.

Assume further that By ¢ C and Ly, is generic. Then

(3) ([03]) w is in the center of w1 (C? — C*). Therefore Ker(y) = ((w]) = Z.

(4) ¢y induces an isomorphism of the commutator groups: yyp : D(w(C? — C%))—=D(m (P2 - C))
and an ezact sequence of first homologies: 0 — ([w]) =2 Z — H1(C? — C) — H1(P? - C) — 0.

Proof. The assertions are well-known except (4). So we only need to show the assertion (4). First
typ is surjective. As the homology class [w] of w is given by [(0,dy,...,d,)] under the identification
H(C? - C%) =221 /(1,dy,...,d,), [w] generates an infinite cyclic group. Thus the injectivity of
typ follows from D(m1(P? — C)) NKerty = {e}. The second exact sequence follows from the first
isomorphism and the property: (w) ND(m(C? — C%)) ={e}. O

We usually denote G/ M as 7;1(C? — C% bo) = {g1,---,9a; R(c1), ..., R(a¢)). We call
71 (C% — C®) the fundamental group of a generic affine complement of C if L, is generic. Note
that if L is generic, 71(C? — C®) does not depend on the choice of a line at infinity L.

(2.3) Bracelets and lassos. An element p € m(P? — C;b) is called a lasso for C; if it is
represented by a loop £o 7 o L7} where 7 is a counter-clockwise oriented boundary of a small
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normal disk D;(P) of C; at a regular point P € C; such that D;(P)N(CU Ly) = {P} and L is
a path connecting by and 7. We call 7 a bracelet for C;. It is easy to see that any two bracelets
and 7' for the same irreducible component, say Cj;, are free homotopic. Therefore the homotopy
class of a lasso for C; (or L) is unique up to a conjugation. We say that the line at infinity L is
central for C if there is a lasso w for L, which is in the center of 7, (C? — C?) = 7;(P?2 ~CU Ly,).
If L, is generic for C, Ly is central by Proposition (2.2.2) but the converse is not always true
(see Corollary (3.3.1) and Theorem (4.3)).

Assume that Lo, is central for C and take an admissible pencil {L,,n € C} with the base
point By ¢ C. Then w is in the center of m1(C? — C%; by). Thus we can replace the homotopy
deformation of w by free homotopy deformation of 2. This viewpoint is quite useful in the later
sections.

Remark (2.4). Suppose that By ¢ C and L is not generic. Take A = {n € Cp;|n| < R} C Cp
as before and we may assume that 7o € 0A and let 0, := 0A. The monodromy relation g;° 1g§’°° is
contained in the group of monodromy relations M. We can also consider the monodromy relation
around 7 = oo. For this purpose, we identify L, = P! through another rational function ¢ := Y/ X
for |n| > R. For n #0, ¢ : L, — C is written as ¢(n,y) = y/n. Let jg : Ly, — Ly, exp(oi), 0 <8 <
27 be a family of homeomorphisms which is identity outside of a big disk under this identification
¢ : L, — C. Then the base point by stays constant under the identification by ¢ but under the
first identification of y : L, — P!, this gives a rotation: § — bgexp(fi). Putting h' = jar, this
implies that the monodromy relation around L, is given by

(2.4.1) [hy(9)] =wg™"=w™l, g€G
This gives the following corollary.

" Corollary (2.4.2). Teke another generic line Ly for C with ng # no. Let Ry,..., Ry be the
monodromy relation along o; as before. Then the fundamental group of a generic affine complement
m (P2 - CU Ly15b0) is isomorphic to the quotient group of m(C* — C%bo) by the relation wg; =
giw, 1 = 1,...,d. In particular, if w is in the center of w1 (C? — C%by), 71 (C2 — C%by) is
isomorphic to the fundamental group of a generic affine complement m (P2 — C'U Ly 5b0).

Proof. Changing coordinates if necessary, we may assume that ny = 0. Using the second iden-
tification Y/X : L, = P! for  # 0, we can write the monodromy relation R(co) at n = oo
as R(co) : g; = [hy(g;)], for j = 1,...,d and the other monodromy relations R;,i = 1,...,¢
are the same with those which are obtained from the first identification. Therefore we have
wl(Pz—CUL%;bo) ~{g1,...,9d; R1,..., Ry, R(c0)). On the other hand, we know that w = g4--- g1
is in the center of 73 (P? — C' U Lyy;b) ([02]). Thus we get (%) : wg; = gjw, j = 1,...,d in
m(P2-CU L,;;b0). Conversely in the group (g1,...,94; R1, ..., Re, (%)), we have the equality:

-0, ,—1 R(_oo) -1 —0co

g; ' Ihy(gy)] = 95 wgy T w ™ T=T g g7 =
Thus we can replace R(oo) by (x) O
(2.5) Milnor fiber. Consider the affine hypersurface V(C) = {(z,y,2) € C*; F(z,y,z) = 1}
where F(X,Y,Z) = Z4f(X/Z,Y/Z). The restriction of Hopf fibration to V(C) is d-fold cyclic

covering over P2 — C. Thus we have an exact sequence:
(2.5.1) 1—-m((V(C)) = m(P?~C)— Z/dZ — 1

Comparing with Hurewicz homomorphism, we get
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Proposition (2.5.2) ([02]). IfC is irreducible, w1, (V(C')) is isomorphic to the commutator group
D(ry(P? — C)) of m (P% - C).

§3. Cyclic transforms of plane curves. Let C C P? be a projective curve of degree d. Fixing
a line at infinity L., we assume that the affine curve C® := C' N C? is defined by f(z,y) = 0 in

C? = P? — L. We assume that f(z,y) is written with mutually distinct non-zero ay,...,ax as
k
(#) F(@,y) = [[(0° - aia®) + (lower terms),  ged(a,b) = 1
i=1

This implies that deg, f(z,y) = d', deg, f(z,y) = d" where d' := avZle v;, d" = bezl v; and
d = max(d',d") and both pencils {x = n},ec and {y = 6}sec are admissible. Note that the
assumption (§) does not change by the change of coordinates of the type (z,y) — (z + a,y + 5).
(1)Iffa=b=1,thend=d =d" and Lo, N C = {[1;;;0];7 = 1,...,k}. In particular, if v; = 1
for each 2, L, is generic for C' and thus L., intersects transversely with C.

(2) If @ > b (respectively a < b), we have d = d', CNL o = {poo := [1;0;0]} (resp. d = d",CNLy =
{py, :=1[0;1;0]} ) and C has a singularity at p, (resp. at p/ ). The local equation at po, (resp.
p..) takes the form:

15, (¢* — @;€27)% + (higher terms), ¢ =Y/X,6=Z/X, a>b
L T (¢°77 = 0u€®) + (higher terms), (' =Z/Y,&' = X/Y, a<b
Now we consider the horizontal pencil M,, = {y =7}, n € C and let D = Mpg be a generic pencil

line. As 3 is generic, D N C? is d" distinct points in C2. For an integer n > 2, we consider the
n-fold cyclic covering ¢, : C* — CZ, defined by

Pn - C? - C?, en(z,y) = (z,(y — B)" + B)
which is branched along D. Let C,(C; D)® = ¢ 1(C®) and let C,(C; D) be the closure of C,,(C; D)?
in P2. To avoid the confusion, we denote the source space of ¢, by C? and the coordinates of
C? by (&,5). Thus the line {§ = B} is equal to ¢;*(D) and we denote it by D. We denote
the line at infinity P? — C? by Loo. Let £(™(&,7) be the defining polynomial of C,(C; D)*. As
F(E,9) = f(&,(F - B)™ + B), ™ (&,7) takes the form:

k

(3.1.2) ™ (z,y) = H(gj."“ — a;#%)"* + (lower terms).

=1

(3.1.1)

Observer that f(™)(Z,7) also satisfies (f).

(3.2) Singularities of C,(C;D). Let ay,...,a, be the singular points of C?® and put Lo, NC =
{al,,...,al} and C,(C;D) N Lo, = {ai ;i = 1,...,6} where Lo, is the line at infinity of the
projective compactification of the source space C2 of on. Notethat f=kifa=b=1and =1
otherwise and £ = kb or 1 acoording to na = b or na # b. Cn(C; D) N Ly is either {[1;0;0]} if
na > b or {[0;1;0]} if na < b. It is obvious that for each ¢ = 1,...,s, C,(C; D) has n-copies of
singularities a; 1,...,a; , which are locally isomorphic to a;. We denote the local Milnor number
at a € C by u(C;a). First we recall the modified Pliicker’s formula for the topological Euler
characteristics: :

(3.2.1) X(C) =3d—d*+ ) pu(Csa;)+ > p(C;al,)

7=1 =1



149

Proposition (3.2.2). If the branching locus D is a generic pencil line, the topological types of
(C2,C,(C; D)) and (P2,C,(C; D)) do not depend on the choice of a generic 3.

' Proof. By an easy computation, we have x(C,,(C; D)%) = n(x(C®) — d") +d" which is independent
of the choice of 8. As x(Cn(C; D)) = x(Cn(C; D)%) + £, x(Cn(C; D)) is also independent of a
generic 3. On the other hand, the Milnor number of C,(C; D) at a; ; is equal to that of C at a;.
Therefore by the modified Plicker’s formula, the sum Zle w(C,(C; D);al,) is also independent
of 8. This implies, by the upper semi-continuity of the Milnor number, the independentness of

- each u(C,(C; D);at,). The assertion results immediately from this observation. [

If the branching line D is not generic, C,(C; D) has further singularities. Let G be an arbtrary
group. We denote the commutator subgroup and the center of G by D(G) and Z(G) respectively.
The main result of this section is :

Theorem (3.3). Assume that (1) is satisfied and D is a generic horizontal pencil line.
(1) The canonical homomorphism ¢py : w1 (C? — C,(C; D)*) — w1 (C? — C?) is an isomorphism.
(2-a) Assume a > b (so degCn(C; D) =nd). Then there is a surjective homomorphism
@, : m(P? = C,(C; D)) — w1 (P% — C) which gives the following commutative diagram.

m(P?—C\(C;D)) 2% my(P? - C)

Tru Tbu

w1 (C? = Ca(C; D)) M my(c? - o)

where 1y and vy are indeced by the respective inclusions and the kernel of ®,, is normally generated

1

by the class of W' := ¢ }(w) where w™! is a lasso for Loo and w'~"™ is a lasso for the line at infinity
nf

Eoo‘ of cz.
(2-b) Assume that na < b (so degCn(C;D) = degC® = d). Then we have an isomorphism:
71'1(P2 - Cn(C,D)) = 7I'1(P2 - C)

Corollary (3.3.1). Assume that a > b and Lo is central for C. Then
(1) L is central for Co(C; D) and there is a canonical central extension of groups

1 — Z/nZ— 5w (P? - Cn(C;D))&ml P*-C)—1

i.e., (Z/nZ) C Z(x(P? - C,(C; D and Z nZ is generated by w' = @~} (w).
nf

(2) The restriction of ®, gives an isomorphism of commutator groups
®, : D(my (P? — C,(C; D)) — D(x1(P? — C))
and the following ezact sequences of the centers and the first homology groups:
1 — Z/nZ — Z(m(P?-C,(C;D))) — Z(m(P?*-C)) — 1

1 - Z/nZ — H;(P’-C,(C;D)) —5© H,(P2-C) — 1

Proof of Theorem (3.3). Taking the change of coordinates (z,y) — (z,y + 3), we may assume
D = {y = 0} for simplicity. We first prove the assertion (1). We consider the horizontal pencil
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M, = {y = n},n € C. Let A, = {n € C;|y| < ¢}, E(e) = Upea, (M — C* N M) and
E(e)* = E(e) = D. As My = D is a generic pencil line, F(¢) and E(e)* are homeomorphic to
the products (M, — C* N M?) x A, and (M. — C®* N M?) x AX respectively for a sufficiently
small ¢ > 0. Thus we have the isomorphism 7r1(E(s)*) = 7r1(M — C* N M§) x Z so that the
canonical homomorphism ¢ : 71(Me — C® N M2) — m(E(e)*) is the canonical injection g —
(g,0). As ¢y : m(M: — C* N M2) — m1(C? — C) is surjective by Proposition (2.2.2), we have
71(C% —C*UD) = 7;(C? —~ C?) x Z where Z is generated by a lasso for the branch locus D and the
canonical homomorphism associated with the inclusion map ay : 711 (C?—C?UD) — m;(C?-C?) is
the first projection under this identification. For simplicity, we denote C,,(C; D) by C,,(C) herafter.
We take a lasso 7 for D and fix it. We have the following exact sequence of the covering:

1 = m1(C? — Co(C)* U D) ™my(C? — C*U D) — Z/nZ — 1

As a subgroup of 71 (C? — C® U D) & 7, (C? C“) x Z, 71'1(65 Cn(C)* U ]3) can be identified

with 7, (C? — C?%) x nZ by @ny. Note that ¢ is generated by a lasso 7 for D. Let us consider
B nﬁ

a subgroup H := ¢, Hm(C? = C?) x {e}) C 7r1(C2 C.(C)* U D). Now we consider the following
commutative diagram:

7(C2 — C(C)*UD) > B 1 (C? = Ca(C)%)
Png Pny
l . |

m(C2-C*uD) —  m(C?—-C?)

where @ and a are respective inclusion map. As @y : 71'1(6/2 —Ch(C)*UD) — wl(a/z —Cu(C)) is
surjective and (,o;nl (nZ) is included in the kernel of @y, the restriction ay : H — ﬂl(év? —Cn(C)?) is
surjective. On the other hand, as the composition ¢,y0ay : H — 71 (C? —C?) is equal to ayoppy, it
is obviously bijective. Thus we conclude: @y : H — m (CfE/2 —Cn(C)%) and gy : 7r1(6§ —Cn(C)*) —
71(C? — C?) are isomorphisms. This proves the assertion (1).

We consider now the fundamental groups m;(P? — C,(C)) and 7 (P2 — C).

First we consider the easy case : na < b (Case (2-b)). In this case,d = d", CNLy = {p., =1[0,1,0]}
and deg, f(z,y) = deg; ™ (&,§) = d. Take a generic horizontal pencil line M,, := {y = no} with
no # 0, a base point by € M} and generators gi,...,ga of m(My — My N C?%bo) as before.
Let w = g4---g1. We can assume that w is homotopic to a big circle as in Proposition (2.2.2).
Take 7 € C so that 5 = no. We also take a base point by € ]T/I/ﬁao so that on(bo) = bo. By the
definition, the pencil line ]\750 is generic and ¢, : Mﬁao - M%O NCHC; D) — M3 — Mg NC?® is
homeomorphism which is simply given by (u, %) — (u,710). Thus we can take the pull-back g; of
gj for j =1,...,d as generators of Wl(Mﬁo —Mgo NCE(C; D)). Let @ = gq---g1. Then ¢, (@) = w.
Thus the assertion (2-b) follows from ‘

R

71 (P2 — Ca(C); bo) = m1(C? — C(C; D); bo) /N (&)
m1(C? = C%bo) /N (pn 4(@))

71 (P? — C;by)  as pn (@) =w

1%

14

where A (g) is the normal subgroup normally generated by g.

Now we consider the non-trivial case a > b (Case (2-a)). Then d = d' and deg f(z,y) =
deg, f(z,y) and nd = deg f(&,9) = deg; f™(%,%). Now we consider the vertical pencil L, =
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{z = n} for the computation of the monodromy relations for 7;(C? — C®). Take a generic pencil
line L,, and let C* N L, = {{1,...,€4}. Now we take R > 0 sufficiently large so that C* N Ly, C
{Sy > —R} and f(z,—R) has distinct d"’ roots. We can assume that 3 = —R. Taking a change
coordinates (z,y) — (z,y + R), we may assume from the beginning that

D={y=0}, C*NLy C{yeC;Sy>0}

We take the base point by on the imaginary axis near the base point of the pencil By as in §2 so
that {|y| < |bo|/2} D C* N L,, and we take a system of generators gi,...,ga of m (L2 — C*by)
represented as g; = [L£ o o; o L71] where £ is the segment from by to b0/2 and o} is a loop in
{Sy > 0} n{|y| < |bo|/2} starting from by/2 and w = g4---g; is homotopic to the big circle
2 :t — exp(27ti)bo. See the left side of Figure (3.3.A). Then by Proposition (2.2.2), we have

(3.3.2) T (P? — C) = w1 (C? — C%bo) /N (w)

NOW we consider the fundamental groups ﬂl(év? — Cn(C)“) and 71 (P? — C,(C)) using the pencil
L, = {Z = n} in the source space C2 of ©on. We 1dent1fy L“ with C by g-coordinate. Then by
the definition of C,(C), the intersection of C,(C)* N Ln0 is n-th roots of §;, for j = 1,...,d. As

we have assumed ¢; > 0, C,(C)* N Ly, consists of nd points. So L,, is a generic line for C,(C).
Consider the conical region

D; :={(no,9y) € En0;2ﬂ'j/2n <argg<m(2j+1)/2n}, j=0,...,n-1

is biholomorphic onto H = {(no,y) € L} ; Sy > 0} by ,. Thus the intersection L“ NCL(C)*ND;
consists of d-points which correspond bijectively to those Ly noe.

Figure (3.3.A)

Let bgj ) e Dj,j=0,...,n—1 be the inverse image of the base pomt bo by ¢n and we may assume

l;) = bgo) for example (As a complex number, b(j) is an n-th root of by for j=0,...,n—-1)

Let & be the class of the big circle: @ : [0,1] — L‘fm , &(t) = bo exp(2rti). We take the pull-back

of ¢1,...,94, ggj ), ey g((ij ) in each conical region D;. They gives a system of free generators of
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m(D; — Ca(C)* N L2 ;b57). Let £; be the arc : ¢ > ¢*6{”, 0 < ¢ < 2jr/n which connects b} to

b(()j). We associate gz(j) an element g; ; of wl(igo - Co(C)* N Ego;bg")) by the change of the base
(

point: ggj) =g = Ejgij)fj_l. Thus {g;;;1 <i<d, 0 <j<n-—1}isa system of free generators
of wl(f‘:m; b(()o)). See the right side of Figure (3.3.A). Let w; = g4 ---¢1,; for j=0,...,n—1. Then
it is easy to see that

(3.3.3) W= Wp_1-" wo

and by Proposition (2.2.2), we have

(3.3.4) 71 (P = Ca(C); 85) = m1(C2 — €, (C)%;857) /N (@)

Now we examine the isomorphism: @,y : 71'1(C/72 — Cn(C)% bgo-)) — w1 (C? — C% by) more carefully.

Note first that ¢, (¢;) is j-times the big circle : ¢ +— by exp(27ti), 0 < ¢ < 1. Thus it is homotopic
to w!. Therefore we obtain

(3.3.5) ont(9ig) = W giw ™, pm(wy) =w
This implies that w' =w; = -+ = w,, and
(3.3.6) ony(@) = w™

Thus the assertion follows immediately from the isomorphisms:

11 (P? — Co(C); 857) 2 1, (C? — Co(C)%; ) /N (D)
2 7, (C? = C%bo) /N (pny (@)
o~ 7r1(C2 — C%bo)/N(w™)

By this isomorphism and (3.3.2), we have the canonical surjective homomorphism:
3, : 1 (P2 — Co(C); b)) = 7y (P2 — C; bo)

which is defined by ®,(g; ;) = gi. It is obvious that ®,, makes the diagram in (2) of Theorem (3.3)
commutative. This completes the proof of Theorem (3.3). O

Proof of Corollary (3.8.1). Assume that Lo, is central. Then w € Z(m(C? — C%bo)). As ppy
is an isomorphism, ' € Z(m1(C? — C,(C); b(()o))). Thus the normal subgroup N (w') of 7r1(év2 -
Cn(C); b(()o)) is simply the cyclic group (w') generated by w’. We consider the Hurewicz image of w'
in Hy(P? — C,(C)). Suppose that C has r irreducible components C; of degree d;, j = 1,...,r.
Then it is obvious that C,(C) consists of r irreducible components C,.(C1),...,Cr(C;) of degree
ndy,...,nd, respectively. For any fixed j, dj-elements of {gy;,...,94;} are lassos for C,(C};).
Thus w' corresponds to the class [w'] = (d1,...,d,) of H{ (P2 —C,(C)) 2 Z"/(nd,,...,nd,). Thus
[w'] has order n in the first homology group. As w'™ = e already in 71 (P? — C,(C)), order(w') = n
and the kernel of ®,, is a cyclic group of order n generated by w'. This proves the first assertion
(1).

It is obvious that the image of the commutator subgroup D(m (P? — C,(C; D))) by @, is
surjective to the commutator subgroup D(mi(P? — C)). On the other hand, the kernel Z/nZ is
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injectively mapped to the first homology group Hy(P?—C,(C)). Thus D(m; (P%~C,(C)))NZ/nZ =

{e}. Therefore ®, induces an isomorphism of the commutator groups. The sequence
!

1— Z/nZ — Z(m (P? - (,’n(C)))lI!ﬂu?’(wl(P2 - Q)

is clearly exact. We show the surjectivity of ¥!. Take h' € Z(x;(P? — C)) and choose h €
71 (P? — Co(C)) so that ®,(h) = h'. For any g € m;(P? — C,(C)), the image of the commutator
hgh~'g~! by &, is trivial. Thus we can write hgh~'g~! = w® for some 0 < a < n — 1. As [w] has
order n in first homology, this implies that ¢ = 0 and thus hg = gh for any g. Therefore  is in the
center. The last exact sequence of the assertion (2) follows by a similar argument. This completes

the proof of Corollary (3.3.1). O

Remark (3.3.7). (1) We remark that the rational map ¢!, : P? — P? which is associated with ¢,,
is defined by ¢, ([X;Y; Z]) = [XZ"1;Y™; Z"] and thus ¢!, is undefined at po, := [1;0;0] € C,(C)
and ¢/, (Los — {poo}) = Pl = [051;0].

(2) In the case of na > b > a, there does not exist a surjective homomorphism ®,, : m;(P? —
Cn(C)) — m(P? — O) in general. For example, take C' a smooth curve of degree d' and let
C = C3(C;D') a generic two fold covering with respect to a generic line D' := {z = a}. Then
we take a covering C3(C; D) of degree 3 with respect to a genmeric D := {y = f#}. Then we
know that degC = 2d’ and degC3(C; D) = 3d' and therefore w1 (P? — C3(C; D)) = Z/3d'Z and
71 (P? — C3(C; D')) = Z/2d'Z. Thus there does not exist any surjective homomorphism.

(8.4) Generic cyclic covering. Now we consider the generic case:

d
(3.4.1) flz,y) = H(y — a;x) + (lower terms), ay,...,04 € C*

=1

This is always the case if we choose the line at infinity Lo, to be generic and then generic affine
coordinates (z,y). Take positive integers n > m > 1 and we denote C,(C; D) by C,(C) and
Cin(Cn(C; D); D') by Cryn(C) where D = {y = 8} and D' = {z = a} with generic o, 3. Note
that C,,(C) = C1,n(C). The topology of the complement of C,, »(C) depends only on C and m,n.
We will refer C,(C) and Cy, n(C) as a generic n-fold ( respectively a generic (m,n)-fold ) covering
transform of C. They are defined in C? by

Ca(C)* ={(2,9) € C*; f(2,3") =0}, Cma(0)* ={(&,9) € C% f(z™,§") = 0}

taking a change of coordinate (x,y) — (z + o,y + 3) if necessary. If n > m, Cpnn(C) has one
singularity at po, = [1;0;0] and the local equation takes the following form:

d

[I¢™ = sg™™) + (higher terms), ¢ =Y/X,6=2/X

i=1

Therefore Cyp,,n(C) is locally d ged(m,n) irreducible components at ac. (Cm,n(C), poo) is topologi-
cally equivalent to the germ of a Brieskorn singularity B((n—m)d, nd) where B(p,q) := {¢?—(9} =
0. In the case m = n, we have no smgulanty at infinity. By Theorem (3.3) and Corollary (3.3.1),
we have the following.

Theorem (3.5). Let C,(C) and Cpyn(C) be as above. Then the canonical homomorphisms

71(C? = Cpo n(C)*) 211 (C2 — € (C)*) 4y (€2 — %)
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and @, : 1 (P2 — Cpnn(C)) — 71 (P? — Co(C)) are isomorphisms. There exzist canonical central
extensions of groups

an
1 — Z/nZ % (P2 —Cprn(C)) — mP?-0C) — 1

lid (? gl‘i’m lid
1 - Z/nZ > mP2-C(C) 2 m(PP-C) — 1

The kernel Ker ®,, (respectively Ker ®,, ,,) is generated by an element w' (resp. w'" = &, (w'"))

in the center such that w'™ (resp. w'"™) is a lasso for Leo (resp. for Leo). The restriction of
Priny, ®m and ®, give an isomorphism of the respective commutator groups

B : D(11(P? — Coun(€))) TP Dy (B2 — €a(C))) -2 D(m (B — )

and ezact sequences of the centers and the first homology groups:

1 — Z/nZ — Z(1(P? = Cma(C))) O Z(m(P?2-0C) — 1

-(I_)mn i
1 - Z/nZ — Hl(P2-Cm,n(C)) —s H,(P?-0) — 1

Let {a;,...,a,} be singular points as before. Then C,(C) (respectively Cp, »(C) ) has n
copies (resp. nm copies ) of a; for each i = 1,..., s and one singularity at po, := [1; 0; 0] except the
case n = m. The curve C, »,(C) has no singularity at infinity. The similar assertion for C, ,(C) is
obtained independently by Shimada [Sh]. By Corollary (3.3.1), we have the following.

Corollary (3.5.1). (1) 71(P2 — Ciy,n(C)) is abelian if and only if 7, (P2 — C) is abelian.
(2) Assume that C is irreducible. Then the fundamental groups 1 (V(Cmn(C))) and 71 (V(C)) of
the respective Milnor fibers V(Cpm n(C)) of Cyn(C) and V(C) of C are isomorphic.

Proof. The assertion (1) follows from (2) of Corollary (3.3.1). The assertion (2) is immediate from
Proposition (2.5.2) and Corollary (3.3.1). O

The following is immediate consequence of Corollary (3.3.1) and Corollary (2.4.2).

Corollary (3.5.2). Lo, is central for Cmn(C) i.e., 71 (P? — Con n(C) uf,oo) is isomorphic to the
fundamental group of the generic affine complement of Cpm n(C).

First we consider the following condition for a group G:
(HI.C) Z(G)ND(G) = {e}
This is equivalent to the injectivity of the composition: Z(G) — G — H1(G) := G/D(G). When

this condition is satisfied, we say that G satisfies homological injectivity condition of the center (or
(H.I.C)-condition in short).

Corollary (3.5.3). LetC =C1U---UC, and C' = C{ U---UC. be projective curves with same
number of irreducible components and assume that degree(C;) = degree(C;) =d; fori=1,...,r



155

and assume that w (P? — C') satisfies (H.I.C)-condition. Assume that 1 (P? — Cppn(C)) and
71 (P? = Cn,n(C")) are isomorphic. Then m(P? — C) and m; (P? — C') are isomorphic.

Proof. We may assume that m = 1 by Theorem (3.3). Suppose that o : m (P? — C,(C)) —
71 (P? — C,(C)') is an isomorphism. This induces isomorphisms of the respective commutator

subgroups, centers and the first homology groups. We consider the exact sequences given by
Corollary (3.3.1):

1 - Z/nZ — m(P?-C,(0)) @, m(P2-C) — 1
a &

1 - Z/nZ - m(P?2-C,(C")) B m(P?-C") — 1

Let w' and w" be the generator of the kernels of ®,, and ®/, respectively. As [w'] = [(dy,...,d,)] €
H,(P? — C,(C)) = Z" /(ndy, ... ,nd,) in the notation of (2.1) and [w'] has order n, the homology
class [a(w')] corresponding to a(w') has also order n in Hy(P? — C,(C")), thus [a(w')] is also
anihilated by n. Therefore it is homologous to [(ady,...,ad,)] € H;(P% — C,(C")) for some a €
Z. This implies [®) (a(w'))] = 0 € H;(P? — C’) and therefore, by (3) of Theorem (3.3), that
@, (a(w')) € D(w1 (P2 — C")). Therefore @), (a(w')) € D(m (P? — C")) N Z(x (P2 — C')). By the
(H.I.C)-condition, this implies that ®] (a(w')) = e. Thus by the above exact sequence, a(w') =
(w")P for some B € N with ged(8,n) = 1. Thus the restriction of a to Ker(®,) = Z/nZ is
an isomorphism on to Ker(®;) & Z/nZ. Thus it induces an isomorphism : & : m (P? - C) —
iyl (P2 C,) O ’

Remark (8.6). (1) Take a non-generic line D = {y = B} for C and consider the corresponding
cyclic covering branched along D, ¢, : C?* — CZ. Then the assertions in Theorem (3.3) and
Corollary (3.3.1) for the pull back C' = ;1(C) may fail in general. For example, we can take
the quartic defined by (5.1.1) in §5. Then L is central for C' and =1 (P? — C) = Z/4Z. Take
D = {y = 0} and consider ¢, : C?* — CZ%, py(z,y) = (z,y?). Then the pull back Z; of C isa so
called Zariski’s three cuspidal quartic and 7 (P? — Z,) ia a finite non-abelian group of order 12
([21],[O5]). See also §5.

(2) We do not have any example of a plane curve C such that m;(P? — C) does not satisfy the
(H.I.C)-condition.

§5. Zariski’s quartic and Zariski pairs.

In this section, we apply the results of §3 and §4 to construct plane curves whose complement
have interesting fundamental groups.

- (5.1) Zariski’s three cuspidal quartics. Let Z; be an irreducible quartic with three cusps.
Such a curve is a rational curve. For example, we can take the following curve which is defined in
C? by the following equation ([06)): ' : :

(5.1.1) Z§ ={(z,y) € C*(z —1)3(32 +5) — 6(z — 1)?(3* — 1) — (y° — 1)? = 0}
We call such a curve a Zariski’s three cuspidal quartic. It is known that the fundamental group
71(C? — Z4) and 71 (P? — Z;) have the following representations ([Z1],[06]):
{ 7T1(C2 - Z4) = <P;E§ {P,f} — €, P2 = §2>
m(P?—Zs) =(p,&{p,€} =¢, p> =Ep* =¢)

where p and ¢ are lassos for C' and {p,£} := p€p€~'p~1¢~1. The relation {p,£&} = e is equivalent

to p€p = £p€. The element w is given by p?¢*(= p*). Recall that w™! is a lasso for Lo and is

contained in the center. A Zariski’s three cuspidal quartic is the first example whose complement
has a non-abelian finite fundamental group. We first recall the proof of the finiteness.

(5.1.2)
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Lemma (5.1.3) ([Z1]). Put

Gi1=(p,&{p,Et=¢, p* =€ p" =¢).

Then Gy is a finite group of order 12 such that D(G,) = (p?£p) 2 Z/3Z, Z(G,) = (p?) = Z/27Z
and Hi(G1) 2 Z/AZ and it is generated by the class of p

(5.2) Generic transforms of a Zariski’s quartic. Let C,(Z4) (respectively C, »(Z4)) be a
generic cyclic transform of degree n (resp. of (n,n)) of the Zariski’s quartic Z; and let J,(Z4)
be a generic Jung transform of degree n of the Zariski’s quartic Z;. The singularities of C,(Z,)
(respectively of Cp, n(Z4)) are 3n cusps (resp. 3n? cusps). C,(Z;) has one more singularity at
Poo € Loo and (Cn(Z4), poo) is equal to B((n—1)d,nd) := {¢("?— ¢4~} = 0}. On the other hand,
Jn(Z4) is a rational curve which has 3 cusps and one more singularity at infinity poo € Jn(Z4)NLoo
(Tn(Z4), poo) is topologically equal to B(n—1,n;d) := {("~ 1 +(™)¢—(¢"1)¢ = 0}. By Theorem
(3.5) and Theorem (4.3), we have the following:

Theorem (5.8). The affine fundamental groups n1(C? — C,(Z4)?), m1(C% — Tn(Z4)*) are iso-
morphic to T (C? — Z4) = (pn,&n; {pn,n} =€, p2 = E2).

(1) The projective fundamental groups w1 (P2 — C,(Z4)) and 71 (P? — J.(Z4)) are isomorphic to
G, where G, is defined by G, = {pn,&n; {pn,én} = €, p2 = £2,p%™ = €). Moreover we have a
central extension of groups:

(5.3.1) 1| - Z/nZ — Ga2mG, — 1

defined by ®,(pn) = p and ®,(¢,) = £ and Ker ®,, is generated by ph. In particular, we have
|G| = 12n, D(G,) = (Bn) &2 Z/3Z where B, = [pn,&n] and Z(G,) = (p2) 2 Z/2n7Z.

(2) The Hurewicz sequence 1 — D(G,) — G, — Hi(G,) — 1 has a canonical cross section
0 : Hi(Gp) — G, which is given by 0(p,) = pn. This gives G, a structure of semi-direct product
Z/3 and Z/4nZ which is determined by p,Bnp;t = 2.
(3) Gy, is identified with the subgroup of the permutation group G2, of 12n elements {x;,y;, 2131 <
1,7,k < 4n} generated by two permutations: ap = (21, .., Tan) (Y1, Yan) (21, -, 24n) and 7, =

(w1,y1,$3,y3, cee ,$4n—1,y4n—1)($2,21,934, 23540 ,$4n,z4n—1)(y2722,y4724, ce ,y4n,24n)-

(5.4) Zariski pairs. Let C and C' be plane curves of the same degree and let £(C) = {ay,...,a,,}
and ¥(C') = {af,...,al, } be the singular points of C and C' respectively. Assume that Lo, is
generic for both of them. We say that {C,C'} is a Zariski pairif (1) m = m' and the germ of the
singularity (C, a;) is topologically equivalent to (C’,a}) for each j and (2) there exist neighborhoods
N(C) and N(C") of C and C' respectively so that (N(C’) C) and (N(C'),C'") are homeomorphic
and (3) the pair (P?,C) is not homeomorphic to the pair (P%,C"’) ([Ba)).

The assumption (2)is not necessary if C and C' are irreducible. For our purpose, we replace
3) by one of the following;:

71) w1 (P? — C) % w1 (P? — C),
Z-2) m(C? — C%) ¢ 7 (C?% — C'"), where C% = P? — L, and L, is generic,
Z-3) D(m1(P% — C)) & D(m (P2 - C")).

We say that {C,C'} is a strong Zariski pair if the conditions (1), (2) and the condition (Z-1)
are satisfied. Similarly we say {C,C'} is a strong generic affine Zariski pair ( respectively strong
Milnor pair) if the conditions (1), (2) and the condition (Z-2) (resp. (Z-3) ) are satisfied.

If C and C' are irreducible curves satisfying (1) and (2), {C, C'} is a strong Milnor pair if and
only if the fundamental groups of the respective Milnor fibers V(C) and V(C") are not isomorphic
by Proposition (2.5.2). The above three conditions (Z-1)~ (Z-3) are related by the following.

(
(
(
(
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Proposition (5.4.1). (1) If {C,C'} is a strong Milnor pair, {C,C'} is a strong Zariski pair as
well as a strong generic affine Zariski pair.

(2) Assume that C and C' are irreducible and assume that {C,C'} is a strong Zariski pair and
either m1(C? — C%) or m1(C? — C'?) satisfies (H.I)-condition. Then {C,C'} is a strong generic
affine Zariski pair.

The results of §3,4 can be restated as follows.

Theorem (5.5). Let C,C’ be projective curves and let Cp m(C),Cnm(C") (respectively J,(C) and -
Tn(C")) be the generic (n,m)-fold cyclic transforms (resp. generic Jung transform of degree n) of
C and C'" respectively.

(1) Assume that {C,C'} is a strong affine Zariski pair (respectively strong Milnor pair). Then
{Crm(C),Crnm(C")} is a strong affine Zariski pair (resp. strong Milnor pair).

(2) Assume that {C,C'} is a strong Zariski pair. We assume also either C or C' satisfies (H.I)-
condition. Then {Cp m(C),Crm(C')} is a strong Zariski pair.

The same assertion holds for J,(C) and J.(C").

Example (5.6) (A new example of a Zariski pair). We apply generic 2-covering or (2,2)-

covering and generic Jung transform of degree 2 to the pair {Zg, Z§} to obtain three strong Zarlskl
pairs of curves of degree 12:

* (1) Take {C3(Zs),C2(Zg)}. Both curves have 12 cusps (= B(2,3)) and one B(6,12) singularity at
infinity. m1(P? —C2(Z6)) is a central Z/2Z-extension of Z/3ZZ/2Z and it is denoted by G(3;2; 4)
in [05]. 71 (P? — Cy(Z4)) is isomorphic to a cyclic group Z/127Z. ‘

(2) Take {C2,2(Zs),C2,2(Z¢)}. They have 24 cusps. The fundamental groups are as above.

(3) Take {J2(Zs), .72(Z6)} Singularities are 6 cusps and one B(6,18). The fundamental groups
are as in (1).

(4) Take {C2(T2(Zs)),C2(T2(Z§))}. Singularities are 12 cusps and two B(6,6) singularities.

(5) We now propose a new strong Zariski pair {C;,C3} of degree 12. First for Cy, we take the
generic cyclic transform C3(Z,) of degree 3 of a Zariski’s three cuspidal quartic. Recall that C;
has 9 cusps and one B(8,12) singularity at po, := [1;0;0]. We have seen that m;(P? — C}) is G3,
a finite group of order 36. We will construct below another irreducible curve C; of degree 12 with
9 cusps and one B(8,12) singularity at po, such that m;(P? — Cy) = G(3;2;4) where G(3;2;4) is
introduced in [O5] (see also §6) and it is a central extension of Z/3Z * Z/2Z by Z/2Z.

(6) Take {C3,3(Z4),C5(Ca; D)} where D = {z = a} is generic. They are curves of degree 12 with
27 cusps. The fundamental groups m1(P? — C33(Z4)) and m,(P? — C3(C2; D)) are isomorphic to
the case (5).

Construction of C,. Let us consider a family of affine curves K%(7) = {(z,y) € C% h(y)® =
T7G(x)} (r € C*) where h(y) = 3y* +4y* — 1, G(z) = —(2? — 1)2.
Figure (5.6.A)

Let K(r) be the projective compactification of K%(7). Let ay,...,as be the solution of h(y) = 0.
Here we assume that a;,as are real roots with a; < as and a3 = @z. By a direct computation, we
see that K(7) has 8 cusp singularities at {A;, A},..., A4, Ay} where 4; := (1,qa;), A} :=(~1,qa;)
fori=1,...,4 and a B(8,12) singularity at po, = [1;0;0]. Putting 7 = 1, K(1) has one more cusp
at Ag := (—1,0). For Cy, we take K(1). As m,(P?— K (7)) = G(3;2;4) by [05], 1 (P%—C,) is not

In [O5], we have only considered the curves of type f(y) = g(z) with deg f = degg. However the same
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G(x)
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smaller than G(3;2;4) as there exists a surjective morphism from m; (P? — K(1)) to 7y (P?— K (7)) =
G(3;2;4). In fact, we assert that m; (P? — Cy) = G(3;2;4).
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