<table>
<thead>
<tr>
<th>Title</th>
<th>MINIMUM OF POSITIVE DEFINITE QUADRATIC FORMS (Analytic Number Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KITAOKA, YOSHIYUKI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1996), 958: 105-110</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60458</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
MINIMUM OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA (北岡良之)

Department of Mathematics, School of Science
Nagoya University (名古屋大学)

We are concerned with representation of positive definite quadratic forms by a positive definite quadratic form. Let us consider the following assertion

\[A_{m,n} : \text{Let } M, N \text{ be positive definite quadratic lattices over } \mathbb{Z} \text{ with } \text{rank}(M) = m \text{ and } \text{rank}(N) = n \text{ respectively. We assume that the localization } M_p \text{ is represented by } N_p \text{ for every prime } p, \text{ that is there is an isometry from } M_p \text{ to } N_p. \text{ Then there exists a constant } c(N) \text{ dependent only on } N \text{ so that } M \text{ is represented by } N \text{ if } \min(M) > c(N), \text{ where } \min(M) \text{ denotes the least positive number represented by } M. \]

We know that the assertion \(A_{m,n} \) is true if \(n \geq 2m + 3 \) and there are several results. But the present problem is whether the condition \(n \geq 2m + 3 \) is the best possible or not. It is known that this is the best if \(m = 1 \), that is \(A_{1,4} \) is false. But in the case of \(m \geq 2 \), what we know at present, is that \(A_{m,n} \) is false if \(n - m \leq 3 \). We do not know anything in the case of \(n - m = 4 \). Anyway, analyzing the counter-example, we come to the following two assertions \(\text{APW}_{m,n} \) and \(\text{R}_{m,n} \).

\[\text{APW}_{m,n} : \text{There exists a constant } c'(N) \text{ dependent only on } N \text{ so that } M \text{ is represented by } N \text{ if } \min(N) > c'(N) \text{ and } M_p \text{ is primitively represented by } N_p \text{ for every prime } p. \]

\[\text{R}_{m,n} : \text{There is a lattice } M' \text{ containing } M \text{ such that } M'_p \text{ is primitively represented by } N_p \text{ for every prime } p \text{ and } \min(M') \text{ is still large if } \min(M) \text{ is large.} \]

If the assertion \(\text{R}_{m,n} \) is true, then the assertion \(A_{m,n} \) is reduced to the apparently weaker assertion \(\text{APW}_{m,n} \). If the assertion \(\text{R}_{m,n} \) is false, then it becomes possible to make a counter-example to the assertion \(A_{m,n} \). As a matter of fact, \(\text{APW}_{1,4} \) is true but \(\text{R}_{1,4} \) is false, and it yields examples of \(N \) such that \(A_{1,4} \) is false.

Anyway it is important to study the behaviour of the minimum of quadratic lattices when we vary them. Our aim is to show
Theorem. The assertion $R_{m,n}$ is true if $n - m > 3$, $n \geq 2m + 1$ or $n = 2m \geq 12$.

Remark. If the assertion $R_{m,n}$ is false, we can construct a counter-example to the assertion $A_{m,n}$ as above. When the case of $n < 2m$ seems to have a different nature from the case of $n \geq 2m$.

To prove it, we are involved in analytic number theory. The rest is a brief summary of the proof.

We denote by Z, Q, Z_p and Q_p the ring of integers, the field of rational numbers and their p-adic completions. Terminology and notation on quadratic forms are those from [K]. For a lattice on M on a quadratic space V over Q, the scale $s(M)$ denotes $\{B(x,y) \mid x, y \in M\}$, and the norm $n(M)$ denotes a Z-module spanned by $\{Q(x) \mid x \in M\}$. Even for the localization M_p it is similarly defined. dM, dM_p denote the discriminant of M, M_p respectively. A positive lattice means a lattice on a positive definite quadratic space over Q. We give proofs only for a few assertions.

Definition. For a real number x, we define the decimal part $[x]$ by the conditions

$$-1/2 \leq [x] < 1/2 \quad \text{and} \quad x - [x] \in Z.$$

Note that $[x]^2 = [-x]^2$ for every real number x.

Definition. For positive numbers a, b, we write

$$a \ll_m b$$

if there is a positive number c dependent only on m such that $a/b < c$. If both $a \ll_m b$ and $b \ll_m a$ hold, then we write

$$a \asymp_m b.$$

If m is an absolute constant, then we omit m.

Definition. For positive numbers c_1, c_2, we say that a positive definite matrix $S^{(m)} = (s_{i,j})$ is (c_1, c_2)-diagonal if we have

$$c_1 \text{ diag}(s_{1,1}, \ldots, s_{m,m}) < S < c_2 \text{ diag}(s_{1,1}, \ldots, s_{m,m}).$$

If S is in the Siegel domain \mathfrak{S}, then there exist positive numbers c_1, c_2 dependent on \mathfrak{S} so that S is (c_1, c_2)-diagonal (see Ch.2 in [K]).
Lemma 1. Let $M = \mathbb{Z}[v_1, \cdots, v_m]$ be a positive lattice and assume that $(B(v_i, v_j))$ is (c_1, c_2)-diagonal. For a primitive element $w = \sum_{i=1}^{m} r_i v_i$ in M and for a natural number N, we have

$$\min(M + \mathbb{Z}[w/N]) \asymp c_1, c_2 \min \left(\min(M), \min_{b \in \mathbb{Z}, N \nmid b} \left(\sum_{i=1}^{m} \frac{b_i}{N} \quad 2^2 Q(v_i) \right) \right).$$

Proof. Since there are positive constants c_1, c_2 so that

$$c_1 \sum_{i=1}^{m} x_i^2 Q(v_i) < Q(\sum_{i=1}^{m} x_i v_i) < c_2 \sum_{i=1}^{m} x_i^2 Q(v_i),$$

putting

$$Q'(\sum_{i=1}^{m} x_i v_i) := \sum_{i=1}^{m} x_i^2 Q(v_i),$$

we have

$$\min_{Q}(M + \mathbb{Z}[w/N]) \asymp c_1, c_2 \min_{Q'}(M + \mathbb{Z}[w/N])$$

$$= \min \left(\sum_{i=1}^{m} (b_i + \frac{b_i}{N}) \quad 2^2 Q(v_i) \right),$$

where integers b, b_i ($i = 1, \cdots, m$) should satisfy $b_i + \frac{b_i}{N} \neq 0$ for some i. By noting that under the restriction $N \nmid b$, the minimum is $\min(M)$, and that the condition $N \nmid b$ yields $b_i + \frac{b_i}{N} \neq 0$ for some i, it is equal to

$$\min \left(\min(M), \min_{b \in \mathbb{Z}, N \nmid b} \left(\sum_{i=1}^{m} \frac{b_i}{N} \quad 2^2 Q(v_i) \right) \right). \quad \Box$$

Remark. Let M and M' be positive lattices of rank $M = \text{rank } M'$. Then the condition $M' \supset M$ implies $\min(M') \leq \min(M) \leq [M' : M]^2 \min(M')$.

Theorem 1. Let q_1, \cdots, q_t be positive numbers, and r_1, \cdots, r_t non-zero integers with $r_1 = 1$, and finally N a natural number. Then we have

$$K := \min \left(\sum_{j=1}^{t} \frac{b_j}{N} q_j \right)$$

$$\geq \min \left(\left(\frac{r_1}{2r_2} \right)^2 q_1, \cdots, \left(\frac{r_t-1}{2r_t} \right)^2 q_{t-1}, N^{-2} \sum_{j=1}^{t} r_j^2 q_j \right).$$
Proof. Suppose that

(1) \[K \leq \left(\frac{r_{j}}{2r_{j+1}} \right)^{2} q_{i} \text{ for } j = 1, \ldots, t - 1. \]

We will show that \(K \) is attained at \(b = 1 \). Suppose that an integer \(b \) give the minimum \(K \) and \(|b| \leq N/2 \). The condition \(N \nmid b \) implies \(b \neq 0 \). First, we claim

(2) \[|br_{j}| \leq N/2 \text{ for } j = 1, \ldots, t. \]

When \(j = 1 \), it is true because of \(r_{1} = 1 \). Suppose that (2) is true for \(j = i \); then we have \(|br_{j}| \leq N/2 \) and hence \(K \geq |br_{j}/N|^{2}q_{i} = (br_{j}/N)^{2}q_{i} \), which yields \(|b| \leq \sqrt{K/q_{i}N}/|r_{j}| \).

Now using (1), we have \(|br_{j+1}| \leq \sqrt{K/q_{i}N/|r_{j}|} \cdot |r_{j+1}| \leq |r_{j}/(2|r_{j+1}|)N/|r_{j}| \cdot |r_{j+1}| = N/2 \). Thus (2) has been shown inductively.

The condition (2) implies \(|br_{j}/N|^{2} = (br_{j}/N)^{2} \) and then

\[
K = \sum_{j=1}^{t} (br_{j}/N)^{2} q_{j} = b^{2}/N^{2} \sum_{j=1}^{t} r_{j}^{2} q_{j} \geq N^{-2} \sum_{j=1}^{t} r_{j}^{2} q_{j}.
\]

This completes the proof. \(\square \)

Corollary 1. Suppose \(t = 2 \). Then we have

\[K \gg q_{1}q_{2}/N \text{ if } r_{2}^{2} \gg q_{1}/q_{2}N \text{ or if both } (r_{2}, N) = 1 \text{ and } \sqrt{q_{1}/q_{2}}N \ll 1. \]

Corollary 2. Let \(q_{j}, r_{j}, t, N, K \) be those in Theorem 1, and put

\[
\Delta := \prod_{k=1}^{t} q_{k}, \ \Delta_{j} := \Delta^{-(j-1)/t} \prod_{k<j} q_{k}, \ \eta_{j} := \frac{|r_{j}|}{N^{(j-1)/t} \Delta_{j}^{1/2}}
\]

for \(j = 1, \ldots, t \). Then we have

(i) \[4 \left(\frac{\Delta}{N^{2}} \right)^{-1/t} K \geq \min \left((\eta_{1}/\eta_{2})^{2}, \ldots, (\eta_{t-1}/\eta_{t})^{2}, \sum_{j=1}^{t} \eta_{j}^{2}(\Delta/N^{2})^{1-i/t} \left(\prod_{j<k} q_{k}^{-1} \right)^{-1} \right) \geq \min((\eta_{1}/\eta_{2})^{2}, \ldots, (\eta_{t-1}/\eta_{t})^{2}, \eta_{t}^{2}) \]

(ii) \(\eta_{1} = 1 \),

(iii) if \(q_{1} \geq q_{2} \geq \cdots \geq q_{t} \), then we have \(\Delta_{j} \geq 1 \) for \(j = 1, \ldots, t \).

To understand \(K \), it is better to give an estimate from above.
Proposition 1. Let q_1, \ldots, q_l be positive numbers, and r_1, \ldots, r_l integers, and finally N a natural number with $(r_1, \ldots, r_l, N) = 1$. Put

$$
\Delta = \prod_{i=1}^{l} q_i, \quad K := \min_{b \in \mathbb{Z}, N \nmid b} \left(\sum_{j=1}^{t} \left\lceil br_j/N \right\rceil^{2} q_j \right).
$$

Then we have the following:

(1) $K \geq \min\{q_1, \ldots, q_l\}$ or $K \ll (\Delta/N^2)^{1/4}$

(2) $K \ll (\Delta/N^2)^{1/4}$ if $(\Delta/N^2)^{1/4} \ll \min\{q_1, \ldots, q_l\}$.

We must study the distribution of isotropic vectors in a quadratic space over a finite prime field to take account of the condition at a finite prime in the assertion $R_{m,n}$. For an odd prime p, F_p denotes the prime field with p elements.

Lemma 2. Let $V = F_p[e_1, e_2]$ be a regular quadratic space over the field F_p with quadratic form Q. Then for every positive integer $H < p$, we have

$$
| \sum_{1 \leq x \leq H} \chi(Q(xe_1 + e_2)) | \leq 2\sqrt{p} \log p + 1,
$$

where χ stands for the quadratic residue symbol with $\chi(0) = 0$.

The proof is routine.

Theorem 2. Let $V = F_p[e_1, \ldots, e_m]$ ($m \geq 3$) be a quadratic space over F_p. Then we have the following assertions:

(i) Suppose that $Q(e_i) = 0, B(e_i, e_j) \neq 0$ for some i, j ($i \neq j$). Then for any $x_k \in F_p$ ($k \neq i, j$), there are elements $y_i \in F_p, y_j = \pm 1$ and $u \in V$ so that

$$
u := y_i e_i + y_j e_j + \sum_{k \neq i,j} x_k e_k$$

is isotropic and $B(u, v) \neq 0$.

(ii) Suppose $m \geq 4$ and $\dim \text{Rad} V \leq m - 3$. Let r be a natural number. Then there exist a subset $T = \{t_1, \ldots, t_4\} \subset \{1, 2, \ldots, m\}$ and a positive number c_r which satisfy the following property:

Let S_1, S_2 be subsets of F_p and assume that $|S_1| = 3$ and S_2 is a union of at most r sets of consecutive integers. If $p > c_r$ and $|S_2| > 5r \sqrt{p} \log p$, then there are elements $x_1 \in F_p, x_2 = \pm 1, x_3 \in S_1, x_4 \in S_2, y_i \in F_p$ for $i \notin T$ and $u \in V$ such that

$$
u = \sum_{j=1}^{4} x_j e_{t_j} + \sum_{i \notin T} y_i e_i$$

is isotropic and $B(u, v) \neq 0$.
To combine stories at the infinite prime and at a finite prime, we need the following.

Theorem 3. Let p be a prime number and r, m positive integers with $r < m$. Let $S^{(m)}$ be a regular symmetric integral matrix and we write $S = \begin{pmatrix} S_1^{(r)} & S_2 \\ S_3 & S_4 \end{pmatrix}$ and let $D_1 \in M_{m-r}(\mathbb{Z}_p)$, $D_2 \in M_r(\mathbb{Z}_p)$ be regular matrices and suppose that $p^{i_1}, \ldots, p^{i_{m-r}}$ (resp. $p^{i_{m-r+1}}, \ldots, p^{i_m}$) be elementary divisors of D_1 (resp. D_2) and $t_1 \leq \cdots \leq t_m$.

Let $A^{(m)} = \begin{pmatrix} A_1^{(m-r)} & A_2^{(r)} \\ A_3^{(m-r)} & A_4^{(m-r,r)} \end{pmatrix}$ be an integral matrix with $\det A = \pm 1$. Assume that for a natural number e,

$$A_4 \equiv 0 \mod p^e, \quad t_{m-r} < e + t_1 \leq \min(t_m + 1, t_{m-r+1})$$

$$S[A] \equiv \begin{pmatrix} D_1 & 0 \\ 0 & D_2 \end{pmatrix} \mod p^{e+1}.$$

Then S_4 and D_1 have the same elementary divisors and $S_3 \equiv 0 \mod p^{e+t_1}$, and the matrix $S_4^{-1}S_3$ is integral over \mathbb{Z}_p and both $S_1 - S_4^{-1}[S_3]$ and D_2 have the same elementary divisors over \mathbb{Z}_p.

Now we can show the following, and by using them we can show the theorem.

Proposition 2. Let M be a positive lattice such that $\text{rank}(M) \geq 4$, $s(M) \subset p\mathbb{Z}$. Then there is a positive number δ satisfying the following condition:

If $p > \delta$, then there is a lattice M' containing M such that $[M' : M]$ is a power of prime p, $s(M'_p) = \mathbb{Z}_p$, and $\text{min}(M') \geq p^{3/4}$.

Remark. In the Proposition 2, let N be a positive lattice of rank $2m$ and assume that M_p is represented by N_p and that N_p is unimodular if $p > \delta$. Then M'_p is primitively represented by N_p.

Proposition 3. Let M and N be positive lattices of rank(M) = $m \geq 6$ and rank(N) = $2m$ respectively, and p a prime number, and suppose that M_p is represented by N_p. Then there is a lattice $M'(\supset M)$ such that $M'_q = M_q$ if $q \neq p$, M'_p is primitively represented by N_p and $\text{min}(M') > c(N_p) \text{min}(M')^{cr}$, where $c(N_p)$ depends only on N_p and c_p depends only on m.

References

