Simultaneous Approximations and Dynamical Systems

On the simultaneous approximation of (α, α^2) satisfying $\alpha^3 + k\alpha - 1 = 0$

Shunji Ito (伊藤俊次)

Tsuda College 津田塾大)

For each $k \in \mathbb{N}$, let us consider the following matrix A_k and its characteristic polynomial $\Phi_k(x)$ of A_k in this talk:

$$A_k = \left(egin{array}{ccc} k & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight),$$

and

$$\Phi_k(x) = x^3 - kx^2 - 1.$$

The positive solution λ of $\Phi_k(x) = 0$ has the following properties:

(1) λ is a complex Pisot number, that is,

$$\lambda > 1 > |\lambda'| = |\lambda''|$$

where λ', λ'' are algebraic conjugates of λ and moreover the number λ satisfies

$$k+1>\lambda>k,$$

(2) put $\alpha = \frac{1}{\lambda}$, then the column eigen vector of A_k is given by

$$A_k \left(\begin{array}{c} 1 \\ \alpha \\ \alpha^2 \end{array} \right) = \lambda \left(\begin{array}{c} 1 \\ \alpha \\ \alpha^2 \end{array} \right),$$

 $<1, \alpha, \alpha^2>$ is a basis of the cubic field $Q(\alpha)$ and discriminant of α is given by $d_k=-4k^3-27,$

(3) the pair of rational numbers $\left(\frac{p_n}{q_n}, \frac{r_n}{q_n}\right)$ given by

$$A_k^n = \begin{pmatrix} q_n & q_{n-2} & q_{n-1} \\ p_n & p_{n-2} & p_{n-1} \\ r_n & r_{n-2} & r_{n-1} \end{pmatrix}$$

give a simultaneous approximation of (α, α^2) . Moreover, there exists $C_k > 0$ such that the inequality

$$\max\left(\left|\alpha - \frac{p_n}{q_n}\right|, \left|\alpha^2 - \frac{r_n}{q_n}\right|\right) > \frac{C_k - \epsilon}{q_n^{\frac{3}{2}}} \quad for \ any \ \epsilon > 0$$

holds for any n. (We know that the point (α, α^2) is a purely periodic point with period 1 by *Modified Jacobi-Perron algorithm* [2].)

The aim of this talk is to claim the following theorem.

Theorem 1 For each $k \in \mathbb{N}$, put the sets of points J_k and L_k :

$$J_{k} := \left\{ \left(\sqrt{q_{n}} (q_{n} \alpha - p_{n}), \sqrt{q_{n}} (q_{n} \alpha^{2} - r_{n}) \right) \mid n = 1, 2, \cdots \right\},$$

$$L_{k} := \left\{ \left(\sqrt{q} (q \alpha - p), \sqrt{q} (q \alpha^{2} - r) \right) \mid (q, p, r) \in \mathbb{Z}^{3}, q > 0 \right\}.$$

Then there exists a domain D_k exactly, which is the interior of an ellipse (the explicit form of the ellipse is found in [1]), such that

- (1) the limit set of J_k is equal to the ellipse ∂D_k ,
- (2) the limit set of $L_k \setminus J_k$ is included in the complement of $\overline{D_k}$,
- (3) the volume of D_k is equal to $\frac{2\pi}{\sqrt{|d_k|}}$, where d_k is the discriminant of α given by $d_k = -4k^3 27$.

As a collorary, we have

Corollary 1 For each $k \in \mathbb{N}$, let C_k be the infimum of C > 0 such that

$$max\sqrt{q} \left(\mid q\alpha - p \mid, \mid q\alpha^2 - r \mid \right) < C$$

has infinitely sulutions (q,p,r). Then C_k is given explicitly by

$$C_k^2 = \frac{l(k^2\lambda^2 + 3\lambda + k)}{(k^4 + k^3 + 5k^2 + 4k + 3)\lambda^2 + (k^2 + k + 6)\lambda + (k^3 + k^2 + 5k + 3)},$$

where $l = \frac{\lambda^3}{\lambda^3 + 2}$.

We note that the constant C_k satisfies the relation:

$${C_k}^2 < \frac{1}{\sqrt{|d_k|}}.$$

The proof of the theorem is obtained by using the substitution like as the Diophantine approximation algorithm. In fact, for each $k \in \mathbb{N}$ let us introduce the substitution σ_k on $W^* = \bigcup_{n=1}^{\infty} \{1, 2, 3\}^n$:

$$\sigma_k: \begin{array}{ccc}
1 & \rightarrow & \overbrace{1\cdots 1}^k 2 \\
2 & \rightarrow & 3 \\
3 & \rightarrow & 1
\end{array}.$$

Then the abelianization of σ_k is given by A_k , that is, the following commutative relation holds:

$$W^* \xrightarrow{\sigma_k} W^*$$

$$\downarrow f \qquad \downarrow f$$

$$Z^3 \xrightarrow{A_k} Z^3$$

where $f: W^* \to W^*$ be the canonical homomorphism. Let us denote the fixed point of σ_k by

$$w_k = (w(1), w(2), \cdots, w(l), \cdots)$$

and consider the lattice points:

$$S_k = \left\{ \sum_{i=1}^l f_{w(i)} \mid l = 1, 2, \cdots \right\}.$$

Then we can see that the set of the lattice points S_k is enough to consider the appoximation points of (α, α^2) , that is, we have the following key lemma (See figure).

Lemma 1 Let π be the projection to y-z plane along $(1, \alpha, \alpha^2)$. Then the domain X_k with fractal boundary given by

$$X_k = \overline{\pi S_k}$$

satisfies the following property:

- (1) $0 \in interior \ of \ X_k$
- (2) For any lattice point (q,p,r) the projection point $(p\alpha q, p\alpha^2 r)$ $(= \pi(p,q,r))$ is the outside of X_k if $(q,p,r) \notin S_k$.

We see also that the points $\sqrt{q_n}(q_n\alpha - p_n, q_n\alpha^2 - r_n)$, $n = 1, 2, 3, \cdots$ are the nearest points in $(\sqrt{q}(q\alpha - p), \sqrt{q}(q\alpha^2 - p)), (q, p, r) \in S_k$ from the origin point. Therefore we have the theorem.

- [1] J. Fujii, H. Higashino and Sh. Ito, On the simultaneous approximation of (α, α^2) satisfying $\alpha^3 + k\alpha 1 = 0$ (preprint).
- [2] Sh. Ito and M. Ohtsuki, Modified Jacobi-Pirron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms, Tokyo J. Math., 16 (1993), 441-472.