On the Boundary of unbounded invariant Fatou Components of Entire Functions

Masashi KISAKA (木坂 正史)

Department of Mathematics,
College of Integrated Arts and Science,
University of Osaka Prefecture, Gakuen-cho 1-1, Sakai 593, Japan
e-mail : kisaka@mathsun.cias.osakafu-u.ac.jp

1 Definitions and Results

Let f be a transcendental entire function and f^n denote the n-th iterate of f. Recall that the Fatou set F_f and the Julia set J_f of f are defined as follows:

$$F_f := \{ z \in \mathbb{C} \mid \{ f^n \}_{n=1}^{\infty} \text{ is a normal family in a neighborhood of } z \},$$
$$J_f := \mathbb{C} \setminus F_f.$$

It is possible to consider the Julia set to be a subset of the Riemann sphere $\hat{\mathbb{C}} := \mathbb{C} \cup \{ \infty \}$ by adding the point of infinity ∞ to it. This definition is mainly adopted in the case of meromorphic functions (for example, see [Ber]) and also there are some researches on convergence phenomena of Julia sets as subsets of $\hat{\mathbb{C}}$ ([Ki], [Kr], [KrK]). In this setting, J_f is compact in $\hat{\mathbb{C}}$ and hence J_f is rather easy to handle. But for a transcendental entire function the suitable phase space as a dynamical system is the complex plane \mathbb{C}, not the Riemann sphere $\hat{\mathbb{C}}$, because ∞ is an essential singularity of f and there seems to be no reasonable way to define the value at ∞. So it is more natural to regard J_f as a subset of \mathbb{C} rather than of $\hat{\mathbb{C}}$ and hence we define J_f as above and write $J_f \cup \{ \infty \}$ when we consider J_f to be a subset of $\hat{\mathbb{C}}$.

A connected component U of F_f is called a Fatou component. A Fatou component is called a wandering domain if $f^m(U) \cap f^n(U) = \emptyset$ for every $m, n \in \mathbb{N}$ $(m \neq n)$. If there exists an $n_0 \in \mathbb{N}$ with $f^{n_0}(U) \subseteq U$, U is called a periodic component and it is well known that there are following four possibilities:
1. There exists a point \(z_0 \in U \) with \(f^{n_0}(z_0) = z_0 \) and \(|(f^{n_0})'(z_0)| < 1 \) and every point \(z \in U \) satisfies \(f^{n_0k}(z) \to z_0 \) as \(k \to \infty \). The point \(z_0 \) is called an attracting periodic point and the domain \(U \) is called an attracting basin.

2. There exists a point \(z_0 \in \partial U \) with \(f^{n_0}(z_0) = z_0 \) and \((f^{n_0})'(z_0) = e^{2\pi i \theta} (\theta \in \mathbb{Q}) \) and every point \(z \in U \) satisfies \(f^{n_0k}(z) \to z_0 \) as \(k \to \infty \). The point \(z_0 \) is called a parabolic periodic point and the domain \(U \) is called a parabolic basin.

3. There exists a point \(z_0 \in U \) with \(f^{n_0}(z_0) = z_0 \) and \((f^{n_0})'(z_0) = e^{2\pi i \theta} (\theta \in \mathbb{R} \setminus \mathbb{Q}) \) and \(f^{n_0}|U \) is conjugate to an irrational rotation of a unit disk. The domain \(U \) is called a Siegel disk.

4. For every \(z \in U \), \(f^{n_0k}(z) \to \infty \) as \(k \to \infty \). The domain \(U \) is called a Baker domain.

In particular, if \(n_0 = 1 \), \(U \) is called an invariant component. \(U \) is called completely invariant if \(U \) satisfies \(f^{-1}(U) \subseteq U \). \(U \) is called a preperiodic component if \(f^m(U) \) is a periodic component for an \(m \geq 1 \). \(U \) is called eventually periodic if \(U \) is periodic or preperiodic. It is known that eventually periodic components of a transcendental entire function are simply connected ([Ber], [EL1]) while a wandering domain can be multiply-connected ([Ba1], [Ba2], [Ba5]).

The boundary of unbounded periodic Fatou component can be extremely complicated. For example, consider the exponential family \(E_\lambda(z) := \lambda e^z \). If \(\lambda \) satisfies \(0 < \lambda < \frac{1}{e} \), \(E_\lambda(z) \) has a unique attracting fixed point \(p_\lambda \) with an unbounded simply connected completely invariant basin \(\Omega(p_\lambda) \) and the Fatou set \(F_{E_\lambda} \) is equal to this basin ([DG]). Let \(\varphi : \mathbb{D} \to \Omega(p_\lambda) \) be a Riemann map of \(\Omega(p_\lambda) \) from a unit disk \(\mathbb{D} \), then the radial limit \(\lim_{r \nearrow 1} \varphi(re^{i\theta}) \) exists for all \(e^{i\theta} \in \partial \mathbb{D} \) and moreover the set

\[
\Theta_\infty := \{e^{i\theta} \mid \varphi(e^{i\theta}) := \lim_{r \nearrow 1} \varphi(re^{i\theta}) = \infty\}
\]

is dense in \(\partial \mathbb{D} \) ([DG]). This implies that the Riemann map is highly discontinuous and hence the boundary of \(\Omega(p_\lambda) \), which is equal to \(J_{E_\lambda} \), is extremely complicated. From this fact, it follows that \(J_{E_\lambda} \) is disconnected in \(\mathbb{C} \), since \(\varphi \) is conformal the set

\[
\varphi(\{re^{i\theta_1} \mid 0 \leq r < 1 \} \cup \{re^{i\theta_2} \mid 0 \leq r < 1 \}) \subset U \quad (\theta_1, \theta_2 \in \Theta_\infty, \ \theta_1 \neq \theta_2)
\]
is a Jordan arc in \mathbb{C} and this separates $J_{E_{\lambda}}$ into two disjoint relatively open subsets.

Taking these facts into account, we shall investigate the set Θ_∞ for a genetal unbounded periodic component U and also consider the following problem

Problem: When is the Julia set of a transcendental entire function f connected or disconnected as a subset of \mathbb{C}?

If f is a polynomial, the following criterion is well known. (For example, see [Bea] or [M]).

Proposition A Let f be a polynomial of degree $d \geq 2$. Then the Julia set J_f is connected if and only if no finite critical values of f tend to ∞ by the iterates of f.

Here, a critical value is a point $p := f(c)$ for a point c with $f'(c) = 0$. This is a singularity of f^{-1}. For polynomials we have only to consider this type of singularities but there can be another type of singularities called an asymptotic value for the transcendental case. A point p is called an asymptotic value if there exists a continuous curve $L(t)$ $(0 \leq t < 1)$ called an asymptotic path with

$$
\lim_{t \to 1} L(t) = \infty \quad \text{and} \quad \lim_{t \to 1} f(L(t)) = p.
$$

A point p is called a singular value if it is either a critical or an asymptotic value and we denote the set of all singular values as $\text{sing}(f^{-1})$.

If f is transcendental, however, the above criterion does not hold. For example, let us consider the exponential family $E_{\lambda}(z) := \lambda e^z$ again. If λ satisfies $0 < \lambda < \frac{1}{e}$, the unique singular value $z = 0$ (this is an asymptotic value) is attracted to the fixed point p_{λ} and hence does not tend to ∞ but the Julia set $J_{E_{\lambda}}$ is disconnected as we mentioned above.

For other values of λ, for example $\lambda > \frac{1}{e}$, the singular value $z = 0$ may tend to ∞. If f is a polynomial all of whose critical values tend to ∞, then J_f is a Cantor set and especially disconnected. But on the other hand in this case J_f is equal to the entire plain \mathbb{C} ([D]) and hence connected.

Before considering the connectivity of J_f in \mathbb{C}, we investigate the connectivity of $J_f \cup \{ \infty \}$ in $\widehat{\mathbb{C}}$. In this situation compactness of $J_f \cup \{ \infty \}$ in $\widehat{\mathbb{C}}$ makes the problem easier. Actually we can prove the following:
Theorem 1 Let f be a transcendental entire function. Then the set $J_f \cup \{\infty\}$ in \mathbb{C} is connected if and only if F_f has no multiply-connected wandering domains.

Corollary 1 Under one of the following conditions, $J_f \cup \{\infty\}$ in \mathbb{C} is connected.

1. $f \in B := \{f \mid \text{sing}(f^{-1}) \text{ is bounded}\}$.
2. F_f has an unbounded component.
3. There exists a curve $\Gamma(t)$ ($0 \leq t < 1$) with $\lim_{t \to 1} \Gamma(t) = \infty$ such that $f|\Gamma$ is bounded. Especially f has a finite asymptotic value.

Then how about J_f in \mathbb{C} itself? The results depend on whether F_f admits an unbounded component or not. In the case when F_f admits no unbounded components, we obtain the following:

Theorem 2 Let f be a transcendental entire function. If all the components of F_f are bounded and simply connected, then J_f is connected.

The following is an easy consequence from Theorem 1 and 2.

Corollary 2 Let f be a transcendental entire function. If all the components of F_f are bounded, then J_f is connected in \mathbb{C} if and only if $J_f \cup \{\infty\}$ is connected in \mathbb{C}.

As we mentioned before, for the unbounded component $\Omega(p_{\lambda})$ of $F_{E_{\lambda}}$ the set of all angles where the Riemann map $\varphi : \mathbb{D} \to \Omega(p_{\lambda})$ admits the radial limit ∞ is dense in $\partial\mathbb{D}$ and this leads to the disconnectivity of $J_{E_{\lambda}}$. The Main result of this paper is the generalization of this fact. Under some conditions this result holds for various kinds of unbounded periodic Fatou components. Here, a point $p \in \partial U$ is accessible if there exists a continuous curve $L(t)$ ($0 \leq t < 1$) in U with $\lim_{t \to 1} L(t) = p$.

Main Theorem Let U be an unbounded periodic Fatou component of a transcendental entire function f, $\varphi : \mathbb{D} \to U$ be a Riemann map of U from a unit disk \mathbb{D}, and

$$P_{f_{n_0}} := \bigcup_{n=0}^{\infty} (f_{n_0})^n(\text{sing}((f_{n_0})^{-1})).$$

We assume one of the following four conditions:

1. U is an attracting basin of period n_0 and $\infty \in \partial U$ is accessible. There
exists a finite point $q \in \partial U$ with $q \notin P_{f^{m_0}}$, $m_0 \in \mathbb{N}$ and a continuous curve $C(t) \subset U \ (0 \leq t \leq 1)$ with $C(1) = q$ and satisfies $f^{m_0}(C) \supset C$.

(2) U is a parabolic basin of period n_0 and $\infty \in \partial U$ is accessible. There exists a finite point $q \in \partial U$ with $q \notin P_{f^{m_0}}$, $m_0 \in \mathbb{N}$ and a continuous curve $C(t) \subset U \ (0 \leq t \leq 1)$ with $C(1) = q$ and satisfies $f^{m_0}(C) \supset C$.

(3) U is a Siegel disk of period n_0 and $\infty \in \partial U$ is accessible.

(4) U is a Baker domain of period n_0 and $f^{n_0}|U$ is not univalent. There exists a finite point $q \in \partial U$ with $q \notin P_{f^{m_0}}$, $m_0 \in \mathbb{N}$ and a continuous curve $C(t) \subset U \ (0 \leq t \leq 1)$ with $C(1) = q$ and satisfies $f^{m_0}(C) \supset C$.

Then the set

$$\Theta_\infty := \{e^{i\theta} \mid \varphi(e^{i\theta}) := \lim_{r \nearrow 1} \varphi(re^{i\theta}) = \infty\}$$

is dense in $\partial \mathbb{D}$ in the case of (1), (2) or (3). In the case of (4), the closure $\overline{\Theta_\infty}$ contains a certain perfect set in $\partial \mathbb{D}$. In particular, J_f is disconnected in all cases.

In the case of the exponential family, Devaney and Goldberg ([DG]) obtained the explicit expression

$$\varphi^{-1} \circ E_\lambda \circ \varphi(z) = \exp i \left(\frac{\mu + \bar{\mu}z}{1 + z} \right), \quad \mu \in \{z \mid \Im z > 0\}$$

for a suitable Riemann map φ which was crucial to show the density of Θ_∞ in $\partial \mathbb{D}$. In general, of course, we cannot obtain the explicit form of $\varphi^{-1} \circ f^{m_0} \circ \varphi(z)$ so instead of it we take advantage of a property of inner functions. In general analytic function $g : \mathbb{D} \rightarrow \mathbb{D}$ is called an inner function if the radial limit $g(e^{i\theta}) := \lim_{r \nearrow 1} g(re^{i\theta})$ exists for almost every $e^{i\theta} \in \partial \mathbb{D}$ and satisfies $|g(e^{i\theta})| = 1$. It is easy to see that $\varphi^{-1} \circ f^{m_0} \circ \varphi$ is an inner function. It is known that an inner function g has a unique fixed point $p \in \mathbb{D}$ called a Denjoy-Wolff point and $g^n(z)$ tends to p locally uniformly on \mathbb{D} ([DM]). The following is an important lemma for the proof of the Main Theorem.

Lemma 1 Let $g : \mathbb{D} \rightarrow \mathbb{D}$ be an inner function which is not a Möbius transformation and p its Denjoy-Wolff point.

(1) If $p \in \mathbb{D}$, then $\bigcup_{n=1}^{\infty} g^{-n}(z_0) \supset \partial \mathbb{D}$ holds for every $z_0 \in \mathbb{D} \setminus E$ where E is a certain exceptional set of logarithmic capacity zero.

(2) If $p \in \partial \mathbb{D}$, then $\bigcup_{n=1}^{\infty} g^{-n}(z_0) \supset K$ holds for every $z_0 \in \mathbb{D} \setminus E$ where E is a certain exceptional set of logarithmic capacity zero and K is a certain perfect set in $\partial \mathbb{D}$.
If U is either an attracting basin or a parabolic basin and $g = \varphi^{-1} \circ f^{n_0} \circ \varphi$, we can say more about the set $\cup_{n=-1}^{\infty} g^{-n}(z_0)$.

Lemma 2 Let U be either an attracting basin or a parabolic basin (not necessarily unbounded) and $g = \varphi^{-1} \circ f^{n_0} \circ \varphi$. Then there exists a set $E \subset \mathbb{D}$ of logarithmic capacity zero such that

$$\frac{\sigma_n(z_0, A)}{\sigma_n(z_0, \partial \mathbb{D})} \rightarrow \frac{\text{meas} A}{2\pi} \quad (n \rightarrow \infty)$$

holds for every $z_0 \in \mathbb{D} \setminus E$ and every arc A in $\partial \mathbb{D}$, where $\sigma_n(z_0, A) = \sum (1 - |\zeta|^2)$ and sum is taken over all $\zeta = |\zeta|e^{i\theta}$ with $g^n(\zeta) = z_0$ and $e^{i\theta} \in A$.

The conclusion of Lemma 2 is stronger than that of Lemma 1 (1), because it implies not only that the inverse images $g^{-n}(z_0)$ accumulate on all over $\partial \mathbb{D}$ but also that their distribution is uniform on $\partial \mathbb{D}$. We shall not give the definition of logarithmic capacity here (see [P2]). But we recall that a set of logarithmic capacity zero is extremely thin: it cannot contain a connected set with more than one point and its Hausdorff dimension is zero ([DM], [P2]).

In §2 we prove Theorem 1 and Corollary 1. §3 consists of three subsections. In §3.1 we prove Theorem 2 and make some remarks on the sufficient conditions for f to admit no unbounded Fatou components. In §3.2 we prove Lemma 1 and Lemma 2 which are keys for the proof of the Main Theorem. In §3.3 we prove the Main Theorem.

2 Connectivity of $J_f \cup \{\infty\}$ in $\widehat{\mathbb{C}}$

Proof of Theorem 1: The following criterion is well known. (See for example [Bea], p.81, Proposition 5.1.5).

Proposition B Let K be a compact subset in $\widehat{\mathbb{C}}$. Then K is connected if and only if each component of the complement K^c is simply connected.

Since $J_f \cup \{\infty\}$ is compact in $\widehat{\mathbb{C}}$, we can apply Proposition B. As we mentioned in §1, eventually periodic components are simply connected. So if a Fatou component U is not simply connected, then U is necessarily
a wandering domain which is not simply connected. This completes the proof.

(Proof of Corollary 1): Under the condition (1), f^n cannot tend to ∞ through F_f ([EL2]). On the other hand, f^n tends to ∞ on any multiply-connected wandering domains ([Ba4], [EL1]). So all the Fatou components are simply connected in this case. Under the condition (2) or (3), it is known that all the Fatou components must be simply connected ([Ba4], [EL1], p.620 Corollary 1, 2).

Remark 1 (1) Let $S := \{f | \#\text{sing}(f^{-1}) < \infty\} \subset B$. Then there is even no wandering domain in F_f for $f \in S$ ([GK]). For $f \in B$, F_f may admit a wandering domain U but U must be simply connected as we mentioned above. Under an additional condition

$$J_f \cap \left(\text{derived set of } \bigcup_{n=0}^{\infty} f^n(\text{sing}(f^{-1}))\right) = \emptyset,$$

$f \in B$ has also no wandering domain ([BHKMT]).

(2) We can conclude that in general if $J_f \cup \{\infty\}$ is disconnected, all the Fatou components are bounded and some of which are multiply-connected wandering domains.

3 Connectivity of J_f in \mathbb{C}

3.1 The case when all the Fatou components are bounded

Suppose that a closed connected subset K in \mathbb{C} is bounded. Then all the components of the complement K^c other than the unique unbounded component V are simply connected. (Of course, $V \cup \{\infty\} \subset \mathbb{C}$ is simply connected). If K is unbounded, then all the components of K^c are simply connected, but the converse is false as the example $J_{E\lambda}(0 < \lambda < \frac{1}{e})$ shows. (Compare with the Proposition B). But note that $J_{E\lambda} \cup \{\infty\}$ is connected in \mathbb{C}. For the connectivity of a closed subset in \mathbb{C}, the following criterion holds.

Proposition 1 Let K be a closed subset of \mathbb{C}. Then K is connected if and only if the boundary of each component U of the complement K^c is connected.
(Proof): For the 'only if' part, see [New]. Suppose that K is disconnected. Then there exist two closed sets K_1 and K_2 with $K = K_1 \cup K_2$ and $K_1 \cap K_2 = \emptyset$. Take a point z_0 with $d(z_0, K_1) = d(z_0, K_2)$ where d denotes the Euclid distance in \mathbb{C}. Then $z_0 \in K^c$ and so let U_0 be the connected component of K^c containing z_0. Since ∂U_0 is connected by the assumption, either $\partial U_0 \subset K_1$ or $\partial U_0 \subset K_2$. Without loss of generality we can assume $\partial U_0 \subset K_1$. On the other hand denote $r_0 := d(z_0, K_1) = d(z_0, K_2)$ and let $D_{r_0}(z_0) := \{z \mid |z - z_0| < r_0\}$. Then $\overline{D_{r_0}(z_0)} \subset U_0$ and there exists a point $w \in K_2$ with $w \in \overline{U_0}$. Since $w \in K_2 \subset K$, we have $w \in \partial U_0$ but this is a contradiction since $\partial U_0 \subset K_1$ and $K_1 \cap K_2 = \emptyset$. This completes the proof.

(Proof of Theorem 2): By Proposition 1, it is sufficient to to show that the boundary ∂U is connected for each Fatou component U. Since U is bounded, the boundary of U as a subset of \mathbb{C} and the one as the subset of \mathbb{C} coincide. Hence U is simply connected if and only if ∂U is connected ([Bea], p.81, Proposition 5.1.4). This completes the proof.

Remark 2 (1) Since a non-simply connected Fatou component is necessarily a wandering domain, the assumption of Theorem 2 is equivalent to that all the components of F_f are bounded and F_f admits no multiply-connected wandering domains.

(2) Several sufficient conditions are known for a transcendental entire function f to admit no unbounded Fatou components as follows:

(i) ([Ba3]) $\log M(r) = O((\log r)^p)$ (as $r \to \infty$) where $M(r) = \sup_{|z|=r} |f(z)|$ and $1 < p < 3$.

(ii) ([S]) There exists $\varepsilon \in (0, 1)$ such that $\log \log M(r) < \frac{(\log r)^{\frac{3}{2}}}{(\log \log r)^\varepsilon}$ for large r.

(iii) ([S]) The order of f is less than $\frac{1}{2}$ and $\log M(2r) / \log M(r) \to c$ (finite constant) as $r \to \infty$.

Note that the condition (ii) includes the condition (i).

3.2 A property of inner functions

(Proof of Lemma 1): If g is a finite Blaschke product, then g is a rational function of degree $d \geq 2$. It is well known that in general the
closure of the set of all the inverse images of z_0 by a rational function R of degree $d \geq 2$ contains its Julia set J_R for any z_0 which is not a Fatou exceptional point ([Bea], p.79, Theorem 4.2.7). If the Denjoy-Wolff point p is in \mathbb{D}, then $J_g = \partial \mathbb{D}$ and if the Denjoy-Wolff point p is in $\partial \mathbb{D}$, then $J_g = \partial \mathbb{D}$ or at least J_g is a perfect set in $\partial \mathbb{D}$. In any cases all the inverse images of z_0 are in \mathbb{D} for every $z_0 \in \mathbb{D}$. So our assertion holds for

$$E = E(g) := \{ z \mid z \text{ is a Fatou exceptional point for } g \}$$

and we have $\#E(g) \leq 2$, which implies that E is a set of logarithmic capacity zero.

If g is not a finite Blaschke product, then by Frostman’s theorem ([G], p.79, Theorem 6.4) there exists a set $E_1 \subset \mathbb{D}$ of capacity zero such that $T_a \circ g$ is a Blaschke product for every $a \in \mathbb{D} \setminus E_1$, where $T_a(z) := \frac{z-a}{1-\overline{a}z}$.

Therefore $B := T_a \circ g \circ T_a^{-1}$ is also a Blaschke product. By applying Frostman’s theorem to each g^n, we obtain the set $\cup_{n=1}^{\infty} E_i$ of logarithmic capacity zero such that $T_a \circ g^n \circ T_a^{-1} = B^n$ holds and each B^n is a Blaschke product for every $a \in \mathbb{D} \setminus (\cup_{n=1}^{\infty} E_i)$. Now it is sufficient to prove our lemma for B, so we concentrate on a fixed $a \in \mathbb{D} \setminus (\cup_{n=1}^{\infty} E_i)$ and corresponding Blaschke product $B = T_a \circ g \circ T_a^{-1}$. Let $A_n \subset \partial \mathbb{D}$ be the set of accumulation points of $B^{-n}(0)$, then A_n is closed and B^n can be analytically continued to a meromorphic function on $\mathbb{C} \setminus A_n$ by the reflection principle ([G], p.75, Theorem 6.1). In other words, A_n is equal to the set of singularities of B^n (that is, points at which $B^n(z)$ does not extend analytically). There exists a set E_{B_n} of logarithmic capacity zero such that A_n is equal to the set of accumulation points of $B^{-n}(p)$ for $p \in \mathbb{D} \setminus E_{B_n}$ ([G], Theorem 6.6). Let $E := \cup_{n=1}^{\infty} E_{B_n}$, then E is a set of capacity zero and for every $z_0 \in \mathbb{D} \setminus E$ we have $\cup_{n=1}^{\infty} B^{-n}(z_0) \supset \cup_{n=1}^{\infty} A_n$.

First let us consider the case when the Denjoy-Wolff point p is in \mathbb{D}. Suppose that $\cup_{n=1}^{\infty} B^{-n}(z_0) \supset \partial \mathbb{D}$ does not hold for a $z_0 \in \mathbb{D} \setminus E$, then there exists a open set V with $V \cap \partial \mathbb{D} \neq \emptyset$ such that B^n can be defined on V for every $n \in \mathbb{N}$ and $V \cap (\cup_{n=1}^{\infty} B^{-n}(z_0)) = \emptyset$. We take V as the maximal set satisfying this property. Let $W := V \cap \partial \mathbb{D}$. Since B is not a finite Blaschke product, we have $\#\{B^{-1}(0)\} = \infty$ and so $A_1 \neq \emptyset$. Hence for a $z_0 \in \mathbb{D} \setminus E$ we have $W \neq \partial \mathbb{D}$. So there exists a point $\alpha \in \partial \mathbb{D} \setminus W$. Since B^n cannot take the values $z_0, \frac{1}{z_0}$ and α, $\{B^n[V]\}_{n=1}^{\infty}$ is a normal family. Then by the dynamics of B on \mathbb{D}, we have $B^n|V \rightarrow p$ locally uniformly. But on the other hand $B^n|(V \cap (\mathbb{D})^c) \rightarrow \frac{1}{p}$ by the construction of the extension,
which is a contradiction. Hence $\bigcup_{n=1}^{\infty} B^{-n}(z_0) \supset \partial D$ holds in this case.

Next we consider the case when the Denjoy-Wolff point p is on the boundary of D. Let $K := \bigcup_{n=1}^{\infty} A_n$ and suppose that $K \neq \partial D$. Then B^n is defined on $\mathbb{C} \setminus K$ for every $n \in \mathbb{N}$. Obviously K is closed. If K consists of a single point, say β, then we have $B(\partial D \setminus \{\beta\}) \subset \partial D \setminus \{\beta\}$ and $B((\partial D \setminus \{\beta\})$ is one to one since B is extended by the reflection principle. It follows that B is a Möbius transformation, which is a contradiction. By the similar argument, we can prove $\# K \geq 3$. Then K cannot have an isolated point. If this is not the case, let $\beta \in K$ be an isolated point. Then β is an essential singularity and hence by Picard's theorem, B takes all but exceptional two values in \mathbb{C} infinitely often. This contradicts the fact that $B(\mathbb{C} \setminus K) \subset \mathbb{C} \setminus K$ and $\# K \geq 3$. Therefore it follows that K is a perfect set. Since $\bigcup_{n=1}^{\infty} B^{-n}(z_0) \supset K$ holds for every $z_0 \in D \setminus E$, this completes the proof.

(Proof of Lemma 2): In the case when U is an attracting basin, the result is a special case of Theorem 3 in [P1]. In the case when U is a parabolic basin, the result follows by combining the series of theorems in [DM] (Theorem 6.1, Theorem 4.2, Corollary 4.3, Theorem 3.1) together with the Theorem 3 in [P1].

3.3 In the case when F_f admits an unbounded component — On the Boundary of unbounded invariant Fatou Components

(Proof of Main Theorem): In what follows we assume that $n_0 = 1$ (that is, U is an invariant component) and $m_0 = 1$ for simplicity. This causes no loss of generality, because we have only to consider f^{m_0} instead of f in general cases.

Case (1) Since ∞ is accessible, there exists a continuous curve $L(t)$ ($0 \leq t < 1$) in U with $\lim_{t \to 1} L(t) = \infty$. By deforming $L(t)$ slightly, we construct a new curve $L(t)$ satisfying the following condition.

Lemma 3 There exists a curve $L(t)$ ($0 \leq t < 1$) with $\lim_{t \to 1} L(t) = \infty$ such that every branch of f^{-n} can be analytically continued along it for every $n \in \mathbb{N}$.

(Proof): We may assume that $L(0) \notin P_f$, since $q \notin P_f$ we have $U \not\subset P_f$. Let $p_0 := L(0), p_1, p_2, \ldots$ be points on L such that all the piecewise linear line segments connecting p_0, p_1, p_2, \ldots lie in U. Let $F_{n}^{(1)}, F_{n}^{(2)}, \ldots, F_{n}^{(m)}, \ldots$
be all the branches of f^{-n} which take values on U. The range of the suffix m may be finite or infinite. Define

$$\Theta^{(m)}_{n}(p_{0}) := \{e^{i\theta} \mid F^{(m)}_{n} \text{can be analytically continued along the ray}$$
$$\text{from} \ p_{0} \ \text{in the direction} \ \theta \} \quad (n = 1, 2, \ldots).$$

Then by the next Gross's Star Theorem ([Nev]), it follows that $\Theta^{(m)}_{n}(p_{0})$ has full measure in $\partial \mathbb{D}$.

Lemma C (Gross's Star Theorem) Let f be an entire function and F a branch of f^{-1} defined in the neighborhood of $p_{0} \in \mathbb{C}$. Then F can be analytically continued along almost all rays from p_{0} in the direction θ.

Then the set

$$\Theta(p_{0}) := \bigcap_{n \geq 1, m \geq 1} \Theta^{(m)}_{n}(p_{0})$$

has also full measure in $\partial \mathbb{D}$. Hence by changing p_{1} slightly to a point p'_{1}, the segments $\overline{p_{0}p'_{1}}$ and $\overline{p'_{1}p_{2}}$ lie in U and all the branches $F^{(m)}_{n}$ ($n \geq 1, \ m \geq 1$) can be analytically continued along $\overline{p_{0}p'_{1}}$. By the same method, we can find a point p'_{2} close to p_{2} such that the segment $\overline{p'_{1}p'_{2}}$ lies in U and has the same property as above. By repeating this argument, we can prove the Lemma 3. \qed

Let $l^{(m)}_{n}(t) := F^{(m)}_{n}(L(t))$ then we have $\lim_{t \to 1} l^{(m)}_{n}(t) = \infty$. For suppose this is false, then there exist an increasing sequence of parameter values $t_{1} < t_{2} < \cdots < t_{k} < \cdots$ and a finite point α with $\lim_{k \to \infty} l^{(m)}_{n}(t_{k}) = \alpha \neq \infty$. Then it follows that $\lim_{k \to \infty} L(t_{k}) = f^{n}(\alpha) \neq \infty$ and this contradicts the fact $\lim_{k \to \infty} L(t_{k}) = \infty$.

Let $\varphi : \mathbb{D} \to U$ be a Riemann map of U. Then

$$\Gamma(t) := \varphi^{-1}(L(t)) \quad \text{and} \quad \gamma^{(m)}_{n}(t) := \varphi^{-1}(l^{(m)}_{n}(t))$$

are curves in \mathbb{D} landing at a point in $\partial \mathbb{D}$. This fact is not so trivial but follows from the proposition in [P2] (p.29, Proposition 2.14). We may assume that $\Gamma(t)$ lands at $z = 1 \in \partial \mathbb{D}$ for simplicity. If $\lim_{t \to 1} \gamma^{(m_{0})}_{n_{0}}(t) = e^{i\theta_{0}}$, then since $\lim_{t \to 1} \varphi(\gamma^{(m_{0})}_{n_{0}}(t)) = \lim_{t \to 1} l^{(m_{0})}_{n_{0}}(t) = \infty$, it follows that there exists the radial limit $\lim_{r \to 1} \varphi(re^{i\theta_{0}})$ and this is equal to ∞. This fact follows from the theorem in [P2] (p.34, Theorem 2.16). Therefore it is sufficient to show that the set of all the landing points of $\gamma^{(m)}_{n}(t)$ ($n \geq 1, m \geq 1$) is dense in $\partial \mathbb{D}$.
Let \(g := \varphi^{-1} \circ f \circ \varphi : \mathbb{D} \to \mathbb{D} \). Then by Fatou’s theorem \(\varphi \) has radial limit \(\varphi(e^{i\theta}) = \lim_{r \to 1} \varphi(re^{i\theta}) \in \partial U \) and non-constant for almost every \(e^{i\theta} \in \partial \mathbb{D} \). Hence \(f \circ \varphi(re^{i\theta}) \) is a curve landing at a point in \(\partial U \setminus \{\infty\} \) for almost every \(e^{i\theta} \in \partial \mathbb{D} \). Therefore it follows that \(\lim_{r \to 1} \varphi^{-1} \circ f \circ \varphi(re^{i\theta}) \in \partial \mathbb{D} \) a.e. and thus \(g \) is an inner function. Let \(\overline{C} := \varphi^{-1}(C) \) then by the same reason for \(\Gamma(t) \), \(\overline{C} \) is a curve in \(\mathbb{D} \) with an end point \(\bar{q} \in \partial U \) satisfying \(g(\overline{C}) \supset \overline{C} \).

From the dynamics of \(g : \mathbb{D} \to \mathbb{D} \), it follows that the set \(\bigcup_{n=0}^{\infty} g^n(\overline{C}) \cup \{\bar{p}, \bar{q}\} \) is compact in \(\mathbb{D} \) where \(\bar{p} = \varphi^{-1}(p) \) and \(\bar{p} \) is an attracting fixed point of \(g \) and the distance between this set and \(z = 1 \) is positive. Hence there exists \(\varepsilon_0 > 0 \) such that

\[
U_{\varepsilon_0}(1) \cap \left\{ \bigcup_{n=0}^{\infty} g^n(\overline{C}) \cup \{\bar{p}, \bar{q}\} \right\} = \emptyset
\]

(1)

Since \(\Gamma(t) \) lands at \(z = 1 \), there exists \(t_0 \in [0,1) \) such that \(\Gamma|[t_0,1) \subset U_{\varepsilon_0}(1) \). So by rewriting \(\Gamma|[t_0,1) \) to \(\Gamma(t) (0 \leq t < 1) \) we may assume that \(\Gamma(t) \subset U_{\varepsilon_0}(1) \) for \(0 \leq t < 1 \). Let \(K := \{z \mid |z| \leq 1 - \varepsilon_0\} \) then since every point in \(\mathbb{D} \) tends to \(\bar{p} \) under \(g^n \) and \(K \) is compact, there exists \(n_1 \in \mathbb{N} \) such that for every \(N \geq n_1 \) we have \(g^N(K) \subset U_{\varepsilon}(\bar{p}) \). Then we have \(\gamma^{(m)}_N(t) \subset \overline{C} \) for every \(N \geq n_1 \). For suppose that \(\gamma^{(m)}_N(t) \cap K \neq \emptyset \), then by operating \(f^N \) we have \(\Gamma(t) \cap K \neq \emptyset \) which contradicts \(\Gamma(t) \subset U_{\varepsilon_0}(1) \).

Now suppose that the conclusion does not hold. Then there exists

\[
(\theta_1, \theta_2) := \{e^{i\theta} \mid \theta_1 < \theta < \theta_2\} \subset \partial \mathbb{D} \quad \text{with} \quad \Theta_{\infty} \cap (\theta_1, \theta_2) = \emptyset.
\]

By changing the starting point \(\Gamma(0) \) slightly, if necessary, we may assume that the points \(\gamma_n^{(m)}(0) \) (\(n, m = 1, 2, \cdots \)) accumulate to all over \(\partial \mathbb{D} \) by Lemma 1 (1) while the end points \(\gamma_n^{(m)}(1) := \lim_{t \to 1} \gamma_n^{(m)}(t) \) (\(n, m = 1, 2, \cdots \)) are not in \((\theta_1, \theta_2) \). Therefore there exists \(\gamma^{(m)}_{n_1}(t) \) such that \(\gamma^{(m)}_{n_1}(t) \subset K^c \) and \(\gamma^{(m)}_{n_1}(1) \in \partial \mathbb{D} \setminus (\theta_1, \theta_2) \).

On the other hand there exist inverse images \(g^{-n}(\overline{C}) \) which have limit points on \((\theta_1, \theta_2) \) densely. The reason is as follows: Since \(q \notin P_f \), there exists a neighborhood \(V \) of \(q \) such that all the branches \(F_n^{(1)}, F_n^{(2)}, \ldots, F_n^{(m)} \) can be defined. Let \(V_0 \subset V \) is a neighborhood of \(q \) with \(\overline{V_0} \subset V \). We may assume that \(C \subset V_0 \). Define

\[
c_n^{(m)}(t) := F_n^{(m)}(C(t)), \quad \overline{c}_n^{(m)}(t) := \varphi^{-1}(c_n^{(m)}(t)).
\]

Then \(c_n^{(m)}(t) \) is a curve in \(U \) landing at a point in \(\partial U \) and \(\overline{c}_n^{(m)}(t) \) is a curve in \(\mathbb{D} \) landing at a point in \(\partial \mathbb{D} \) by the same reason as before. Let
$(\theta_3, \theta_4) \subset (\theta_1, \theta_2)$ be any subarc of (θ_1, θ_2). By changing the starting point \(\tilde{C}(0)\) slightly, if necessary, we may assume that the points \(c_{n}^{(m)}(0) \quad (n, m = 1, 2, \ldots)\) accumulate to (θ_3, θ_4) by Lemma 1 (1). Since radial limits of \(\varphi\) exist and non-constant almost everywhere, by changing \(\theta_3\) and \(\theta_4\) slightly if necessary, we may assume that there exist the finite values \(\varphi(e^{i\theta_3})\) and \(\varphi(e^{i\theta_4})\) with \(\varphi(e^{i\theta_3}) \neq \varphi(e^{i\theta_4})\). Then \(c_{n}^{(m)}(0)\) accumulate on \(\partial U \cap \varphi(\{re^{i\theta} \mid \theta_3 < \theta < \theta_4, 0 \leq r \leq 1\})\). In general the family of single-valued analytic branch of \(f^{-n} \quad (n = 1, 2, \ldots)\) on a domain \(U_0\) is normal and furthermore if \(U_0 \cap J_f \neq \emptyset\), any local uniform limit of a subsequence in the family is constant ([Bea], p.193, Theorem 9.2.1, Lemma 9.2.2). So the family \(\{F_{n}^{(m)}|V_0\} \) is normal and all its limit functions are constant and hence for a suitable subsequence the diameter of \(c_{n_k}^{(m_k)}(t)\) tends to zero, that is, \(c_{n_k}^{(m_k)}(t)\) must land at a point in \(\partial U \cap \varphi(\{re^{i\theta} \mid \theta_3 < \theta < \theta_4, 0 \leq r \leq 1\})\) if the constant limit is finite. Therefore \(c_{n_k}^{(m_k)}(t)\) must land at a point in \((\theta_3, \theta_4)\). If the constant limit is \(\infty\), for large enough \(n_k\) the curves \(c_{n_k}^{(m_k)}\) cannot intersect both \(\varphi(re^{i\theta_3}) \mid 0 \leq r \leq 1\) and \(\varphi(re^{i\theta_4}) \mid 0 \leq r \leq 1\) which are bounded set, since the convergence is uniform on \(V_0\). Hence again we can conclude that \(c_{n_k}^{(m_k)}(t)\) must land at a point in \(\partial U \cap \varphi(\{re^{i\theta} \mid \theta_3 < \theta < \theta_4, 0 \leq r \leq 1\})\) and therefore \(c_{n_k}^{(m_k)}(t)\) must land at a point in \((\theta_3, \theta_4)\). This proves the assertion.

Then there exists \(c_{N_1}^{(M_1)}\) such that \(\gamma_{n_1}^{(m_1)} \cap c_{N_1}^{(M_1)} \neq \emptyset\). We may assume that \(n_1 > N_1\). Let \(u \in \gamma_{n_1}^{(m_1)} \cap c_{N_1}^{(M_1)}\) then since \(u \in \gamma_{n_1}^{(m_1)}\), we have \(g^{n_1}(u) \in U_{\varepsilon_2}(1)\). On the other hand since \(u \in c_{N_1}^{(M_1)}\) and \(n_1 > N_1\), we have \(g^{n_1}(u) \in \bigcup_{n=0}^{\infty} g^n(\tilde{C})\) which contradicts (1). Therefore \(\Theta_{\infty}\) is dense in \(\partial \mathbb{D}\). Disconnectivity of \(J_f\) easily follows by the same argument as in the case of \(E_{\lambda}\) in §1. This completes the proof in the case of (1).

Case (2) The proof is quite parallel to the case (1). Note that by Lemma 2, \(\bigcup_{n=1}^{\infty} g^{-n}(z_0) \supset \partial \mathbb{D} \quad (z_0 \in \mathbb{D} \setminus E)\) holds for \(g = \varphi^{-1} \circ f \circ \varphi\) in this case. □

Case (3) Since \(g(z) = e^{2\pi i \theta_0}\) with \(\theta_0 \in \mathbb{R} \setminus \mathbb{Q}\), the inverse image of \(\Gamma(t)\) by \(g^{-n}\) is unique and denote it by \(\gamma_n(t)\). Then it is obvious that the end points of \(\gamma_n(t)\) are dense in \(\partial \mathbb{D}\) and \(\varphi\) attains radial limit \(\infty\) there, since \(g(z)\) is an irrational rotation and

\[
\lim_{t \to 1} \varphi(\gamma_n(t)) = \lim_{t \to 1} f^{-1}(\varphi(\Gamma(t))) = \infty.
\]

Case (4) In this case we need not assume the accessibility of \(\infty\), because this condition is automatically satisfied ([Ba6]). The set \(\bigcup_{n=0}^{\infty} f^n(C)\) is a
curve which may have self-intersections and tends to ∞. It is not difficult to take L satisfying $L \cap \bigcup_{n=0}^{\infty} f^n(C) = \emptyset$. Hence we have $\mathcal{L} \cap \bigcup_{n=0}^{\infty} f^n(C) = \emptyset$. The rest of the proof is quite parallel to the case (1) if the conclusion of Lemma 2 (1) holds for g. If we have only the conclusion of Lemma 2 (2), then we can prove that for every arc $A \subset \partial \mathbb{D}$ with $A \cap K \neq \emptyset$, $A \cap \Theta_{\infty} \neq \emptyset$ holds by the similar argument. □

References

[Kr] B. Krauskopf, Convergence of Julia sets in the approximation of λe^z by $\lambda(1 + \frac{z}{d})^d$, Internat. J. Bif. & Chaos, 3 (1993), 257–270.

