Remarks on Maximal J-Trivial Transformation Semigroups on Finite Sets

Tatsuhiko Saito

Let T(X) be the full transformation semigroup on a finite set X. A semigroup S is \mathcal{I} -trivial if $a\mathcal{I}$ b implies a = b for every $a, b \in S$. In [3], all maximal \mathcal{I} -trivial subsemigroups of T(X) have been determined by the author. In this note, to make the results in [3] more exact, we show the following theorem:

Theorem 1. Let S and T be maximal \mathcal{L} -trivial subsemigroups of T(X). If S and T are isomorphic, then there exists an elemant ξ of the symmetric group on X such that $T = \xi^{-1}S\xi$.

Of course, the above fact does not hold for any subsemigroups of T(X).

To show the theorem, we give some definitions, notations and results in [3].

Let E(X) and $\Pi(X)$ be the sets of equivalence relations on X and partitions of X, respectively. Then it is well-known that there exists a bijection Φ from E(X) to $\Pi(X)$, where $\Phi(\rho)$ is the set of ρ -classes for $\rho \in E(X)$, and that E(X) is a lattice-ordered set under \cap and \vee . Define an order \leq on $\Pi(X)$ by $\Phi(\lambda) \leq \Phi(\rho)$ if $\lambda \supseteq \rho$ for λ , $\rho \in E(X)$. Then $\Pi(X)$ is also a lattice-ordered set which is anti-isomorphic to E(X), i. e., $\Phi(\lambda \vee \rho) = \Phi(\lambda) \wedge \Phi(\rho)$ and $\Phi(\lambda \cap \rho) = \Phi(\lambda) \vee \Phi(\rho)$.

For $\alpha \in T(X)$, let $Fix(\alpha) = \{x \in X \mid x\alpha = x\}$ and let $\omega(\alpha) = \{(x, y) \in X \times X \mid x\alpha^s = y\alpha^t \text{ for some } s, t \ge 0\}$. Then $\omega(\alpha)$ is an equivalence relation on X (see [2]). In this case, $\Phi(\omega(\alpha))$ is denoted by $\Omega(\alpha)$ and each class of $\omega(\alpha)$ is called an *orbit* of α .

Result 1. A subsemigroup S of T(X) is \mathcal{J} -trivial if and only if $Fix(\alpha\beta) = Fix(\alpha) \cap Fix(\beta)$ and $\Omega(\alpha\beta) = \Omega(\alpha) \wedge \Omega(\beta)$ for every $\alpha, \beta \in S$.

Let \leq be a total order on X. Let $T_{RE}(X, \leq) = \{\alpha \in T(X) | x\alpha \leq x \text{ for all } x \in X\}$. Then $T_{RE}(X, \leq)$ is a subsemigroup of T(X) which is called a *regressive* semigroup. For $\pi = \{X_1, X_2, ..., X_r\} \in \Pi(X)$, let $Min(\pi) = \{Min(X_1), Min(X_2), ..., Min(X_r)\}$, where $Min(X_i)$ is the minimum element of X_i . A subset P of $\Pi(X)$ is called a J-subset with respect to \leq if P is a Λ -semilattice in which $Min(\pi_1 \wedge \pi_2) = Min(\pi_1) \cap Min(\pi_2)$ holds for every π_1 , $\pi_2 \in P$. For $\pi \in \Pi(X)$, let $J(\pi, \leq) = \{\alpha \in T_{RE}(X, \leq) \mid \Omega(\alpha) = \pi\}$.

Result 2. A subsemigroup S of T(X) is \mathcal{G} -trivial if and only if $S \subseteq T_{RE}(X, \leq)$ for some total order \leq on X and $\Omega(S) = \{\Omega(\alpha) \mid \alpha \in S\}$ is a J-subset of $\Pi(X)$ with respect to \leq . A

J-trivial subsemigroup S of T(X) is maximal if and only if there exists a maximal J-subset P of $\Pi(X)$ with respect to some total order \leq on X such that $\Omega(S) = P$ and $S = \bigcup \{J(\pi, \leq) \mid \pi \in P\}$.

Let $(X, \leq) = \{1, 2, ..., n \mid 1 \leq 2 \leq ... \leq n\}$ be a totally ordered set. For $k \geq 2$, let $\Pi_{(k)} = \{\pi \in \Pi(X) \mid Min(\pi) = \{1, k\}\}$ and $\Pi_{(1)} = \{\pi \in \Pi(X) \mid Min(\pi) = \{1\}\}$. Then, if $\pi \in \Pi_{(1)}$, then $\pi = \{X\}$ and if $\pi \in \Pi_{(k)}$, $k \geq 2$, then $\pi = \{X_1, X_k\}$ with $Min(X_1) = 1$ and $Min(X_k) = k$, so that $|\Pi_{(k)}| = 2^{n-k-1}$.

Let $P_1 = {\pi_1, \pi_2, ..., \pi_n}$, where $\pi_k \in \Pi_{(k)}$ (k = 1, 2, ..., n). Then P_1 is called an *initial set* of $\Pi(X)$ with respect to \leq .

Result 3. Let (X, \leq) be as above. Every maximal J-subset P of $\Pi(X)$ with respect to \leq contains exact one initial set with respect to \leq . Conversely, for any initial set $P_1 = \{\pi_1, \pi_2, \dots, \pi_n\}$ with respect to \leq , there exists a maximal J-subset P of $\Pi(X)$ with respect to \leq which contains P_1 . In this case, if $\pi \in P$ with $Min(\pi) = Y$, then $\pi = V_{k \in Y} \pi_k$, where $\pi_k \in P_1$.

In Result 3, P_1 is called the *initial set* of P. We note that there are $2^{(n-1)(n-2)/2}$ initial subsets with respect to \leq , since $|\Pi_{(1)}| = 1$ and $|\Pi_{(k)}| = 2^{n-k-1}$ if $k \geq 2$.

Let S and T be maximal \mathcal{G} -trivial subsemigroups of T(X). Then, from Result 2, we have $S \subseteq T_{RE}(X, \leq_S)$ and $T \subseteq T_{RE}(X, \leq_T)$ for some total orders \leq_S and \leq_T on X. Let $(X, \leq_S) = \{1, 2, ..., n | 1 \leq_S 2 \leq_S ... \leq_S n \}$ and $(X, \leq_T) = \{i(1), i(2), ..., i(n) | i(1) \leq_T i(2) \leq_T ... \leq_T i(n) \}$. Let ξ be an order-isomorphism from (X, \leq_S) to (X, \leq_T) , i. e., $k\xi = i(k)$ (k = 1, 2, ..., n). Then ξ is an element of the symmetric group on X. Let $P_S = \Omega(S)$ and $P_T = \Omega(T)$. Then, by Result 2, P_S and P_T are maximal J-subsets of $\Pi(X)$ with respect to \leq_S and \leq_T , respectively, and $S = \bigcup \{J(\pi, \leq_S) | \pi \in P_S\}, T = \bigcup \{J(\pi, \leq_T) | \pi \in P_T\}$. Let $P_{S,1} = \{\pi_1, \pi_2, ..., \pi_n\}$ and $P_{T,1} = \{\pi_{i(1)}, \pi_{i(2)}, ..., \pi_{i(n)}\}$ be the initial set of P_S and P_T , respectively, where $Min(\pi_1) = \{1\}$, $Min(\pi_k) = \{1, k\}$ if $k \leq_T 2$ and $Min(\pi_{i(1)}) = \{i(1)\}$, $Min(\pi_{i(k)}) = \{i(1), i(k)\}$ if $i(k) \neq_T 2$ i(2).

Suppose that S and T are isomorphic. Let $\phi: S \to T$ be an isomorphism.

Hereafter m denotes a sufficiently large integer.

The following lemma is easy to verify:

Lemma 1. Let $\pi = \{X_1, X_2, ..., X_r\} \in P_S$ with $Min(X_i) = x_i$ (i = 1, 2, ..., r). Then:

- (1) $Fix(\alpha) = Min(\pi)$ for every $\alpha \in J(\pi, \leq_S)$.
- (2) $\varepsilon \in T(X)$ defined by $X_i \varepsilon = x_i \ (i = 1, 2, ..., r)$ is a unique idempotent of $J(\pi, \leq_S)$.
- (3) For $\alpha \in S$, $\alpha \in J(\pi, \leq_S)$ if and only if $\alpha^m = \varepsilon$, where ε is the unique idempotent $J(\pi, \leq_S)$.

For $\pi_k \in P_{S,1}$ (resp. $\pi_{i(k)} \in P_{T,1}$), the unique idempotent of $J(\pi_k, \leq_S)$ (resp. $J(\pi_{i(k)}, \leq_T)$) is denoted by ε_k (resp. $\varepsilon_{i(k)}$). Then $X\varepsilon_1 = 1$ (resp. $X\varepsilon_{i(1)} = i(1)$). Therefore ε_1 (resp. $\varepsilon_{i(1)}$) is the zero of S (resp. T), which is denoted by O_S (resp. O_T).

Lemma 2. (1) For $\mu \in S$, $\mu^{n-1} = 0_S$ and $\mu^{n-2} \neq 0_S$ if and only if $k\mu = k-1$ if $k \leq 2$ and $1\mu = 1$. (2) For $\alpha \in S$, $\Omega(\alpha) \in P_{S,1}$ if and only if $(\alpha\beta)^m = 0_S$ or $(\alpha\beta)^m = \alpha^m \neq 0_S$ for every $\beta \in S$.

Let μ be as in (1) of Lemma 2. Since $(\mu\phi)^{n-1} = (\mu^{n-1})\phi = 0_S\phi = 0_T$ and $(\mu\phi)^{n-2} = (\mu^{n-2})\phi \neq 0_T$, applying (1) of Lemma 2 to T, we have that $i(k)(\mu\phi) = i(k-1)$ if $i(k) \ T \geq i(2)$ and $i(1)(\mu\phi) = i(1)$. By using this fact, we obtain the following lemmas.

Lemma 3. $\varepsilon_k \phi = \varepsilon_{i(k)}$ for every $\pi_k \in P_{S,1}$.

Lemma 4. Let $\pi_k = \{X_1, X_k\} \in P_{S,1}$ with $Min(X_1) = 1$ and $Min(X_k) = k$. Then $\pi_{i(k)} = \{X_1\xi, X_k\xi\} \in P_{T,1}$ with $Min(X_1\xi) = i(1)$ and $Min(X_k\xi) = i(k)$.

Proof of Theorem 1. We show that $i(x)(\alpha\phi) = i(x\alpha)$ for every $x \in X$ and every $\alpha \in S$. Then we can show that $T = \xi^{-1}S\xi$. In fact, since $i(x)\xi^{-1}\alpha\xi = x\alpha\xi = i(x\alpha)$ for every $x \in X$ and for every $\alpha \in S$, we have that $\alpha\phi = \xi^{-1}\alpha\xi$.

If x = 1, then the assertion is trivially true.

For $x \le 2$, let $\pi_x = \{X_1, X_x\} \in P_{S,1}$ with $Min(X_1) = 1$ and $Min(X_x) = x$. We first show that if $X_x = \{x\}$ then $i(x)(\alpha \phi) = i(x\alpha)$ for every $\alpha \in S$. Let $x\alpha = k$ and $i(x)(\alpha \phi) = i(j)$ for some $\alpha \in S$. Since $X_x = \{x\}$, $x\varepsilon_x = x$ and $y\varepsilon_x = 1$ if $y \ne x$, so that $x\varepsilon_x = k$ and $y\varepsilon_x = 1$. If k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j, then $x\varepsilon_x = k$ if k < s j. But $x\varepsilon_x = k$ if $x\varepsilon_x$

We now inductively show the above assertion. For x = n, let $\pi_n = \{X_1, X_n\}$ with $Min(X_1) = 1$ and $Min(X_n) = n$. Then $X_n = \{n\}$. From the above fact, $i(n)(\alpha \phi) = i(n\alpha)$ for every $\alpha \in S$.

Suppose that, for some $x \in X$ with $x \le 2$, if $r \le x$, then $i(r)(\alpha \phi) = i(r\alpha)$ for every $\alpha \in S$. Then we show that $i(x)(\alpha \phi) = i(x\alpha)$. Let $x\alpha = t$ and $\pi_x = \{X_1, X_x\}$ with $Min(X_1) = 1$ and $Min(X_x) = x$. If $X_x = \{x\}$, then again by the above fact the assertion is true. Suppose that there exists $r \in X_x$ such that $r \le x$. Then $r \in x = x = x = t$. By the assumption, $i(r)(\varepsilon_x \alpha)\phi = i(r\varepsilon_x \alpha) = i(t)$. Since $\pi_{i(x)} = \{X_1\xi, X_x\xi\}$, we have $i(r) = r\xi \in X_x\xi$, so that $i(r)\varepsilon_{i(x)} = i(x)$. Thus $i(x\alpha) = i(t) = i(r)(\varepsilon_x \alpha)\phi = i(r)\varepsilon_{i(x)}(\alpha \phi) = i(x)(\alpha \phi)$. The proof is complete.

Suppose that $\leq_S = \leq_T$. Then, since $\xi = id_{T(X)}$, we have that $S \cong T$ implies S = T, so that $PS = \Omega(S) = \Omega(T) = P_T$. Consequently, if $PS \neq P_T$, then S and T are not isomorphic. From Result 3, we have that PS = PT if and only if PS = PT. Since the number of initial sets with respect to a fixed total order \leq on S is $S^{(n-1)(n-2)/2}$, we obtain:

Corollary 2 [3]. There are $2^{(n-1)(n-2)/2}$ maximal J-trivial subsemigroups of T(X) up to isomorphisms if |X| = n.

References

- [1] Howie, J. M. "An Introduction to Semigroup Theory", Academic Press, London, 1976.
- [2] Howie, J. M. Products of idempotents in finite full transformation semigroups, Proc. Royal Soc. Edinburgh A 86 (1980) 234-254.
- [3] Saito, Tatsuhiko J-trivial subsemigroups of finite full transformation semigroups. to appear.

Mukunoura 374, Innoshims Hiroshima, 722–23, Japan