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Low dimensional Homotopy and homology for monoid preSentations
HAPRFEHAE /IEEIE (Yuji Kobayashi)

The’homotopy theofy introdﬁcéd by Squier [9] éives a very
general framework for geometrical approach to monoid
presentations. It is considered to include the classical
geometrical theory of group presentations ([6], [7]1).  In this
note we report recent results on a relation between the
homotopical and the homological finiteness conditions of
monoids. The details will be given in [4].

1. Homotopy relations on the derivation graphs
Let = be a finite alphabet and 3" be the free monoid

generated by XZ. Let E be a irreflexive symmetric relation on

', Let =E'denote the congruence on =t generated by E, that

is, = is the smallest compatible equivalence relation
containing E. Let M = 2*/=E be the quotient monoid. We say M
is presented by a presentation (2, E) and write as M = M(Z, E).

We define a graph I' = I'(Z, E) called the derivation graph

of (%, E) as follows: The set of vertices is X", and for e =

(u, v) € E and x, y € E*, (x; u, v; y) is an edge from xuy to

Xvy. An equation e = (u, v) € E is identified with the naked

edge (1; u, v; 1). Since E is symmetric, if e = (x; u, v; y)

is an edge, then (x; v, u; y) is also an edge, which is called
the reverse of e and written e I.

Let P(x, y) denote the set of (directed) paths from the
source X to the target y in I' and P(I') the set of all the paths
in I'. The source and the target of a path p are denoted by
6(p) and 7(p), respectively. For two paths p and q such that
7(x) = 6(y), the path p.q connecting p and q is defined in the

obvious manner. For a path p = e oe o...oen its reverse p_1 =
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6(p) = 7(p) is called a closed path with base point ¢(p) =

e is a path from 7(p) to 6(p). A path p with
T(p). The set P(x, x) of closed path with base point x is
denotéd simply by P(x). A cycle is a simple closed path, that
is, a closed path which does not pass the same edge twice. The
trivial cycle ix with base point x is the cycle of length 0 at
X.
The free monoid X" acts on P(I') on the both sides as
follows: Let z, w € 3. For an edge e = (X; u, Vv; y) define
z-e-w = (zx; u, v; yw),
and for a path p = e1°e2°"’°en define
W) o o(z-e_-w).

1 5 e n
Two paths p and q with the same source and the same target are

Z-P-W = (Z-e,-W)o(Z-e

called parallel, and written as pllq.

An equivalence relation ~ on P(I') is a homotopy relation

(Squier, Otto and Kobayashi [9]), if it is contained in || and
satisfies the following four conditions.

*
(H1) For any x € ¥ and e = (ul, Vi), e, = (u2’ V2) € E,

e, -XUu, o V_.X-€ ~ u,X-€, 0 €, -XV

1 2 1 2 1 2 1 2°
(H2) For any p, q € P(I') and x, y € Z*,
P ~q implies X-p-y ~ X-q-Yy.
(H3) For any p, q, r, s € P(I') with 7(r) = o(p) = 06(q)
and ¢6(s) = 7(p) = ©(q),
P ~ @ implies repes ~ reoges.
(H4) For any e = (u, v) € E,
coe 1 ~ i,
Let ~ be a homotopy relation. The equivalence class of p
€ P(I') modulo the relation ~ is written as [p]_ or simply as
[p]. The quotients P(I')/~ is denoted by an_(I') = n_(Z, E).
The operation . of P(I') induces the operation - of n_(I') by

[pPlelql [Peq]. The action of s* on n_(I') is also induced as
x-[pl-y [x-p-y].
We can also consider the quotients P(x, y)/~ and P(x)/~,

which are denoted by n__(x, y) and n__(x), respectively. Then,
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n (I') = U n (x, y) forms a groupoid and n (x) forms a
~ * A~ ~
X,ye2 ,
group with operation .. The group n~(x) is called the

homotopy group at x with respect to ~. 1In particular, no(x)
denotes the homotopy group at x with respect to~0.

The parallelism || is the largest homotopy relation. Since
homotopy relations are closed under intersection, for any
subset B of I, there is the smallest homotopy relation ~B
containing B, called the homotopy relation generated by B. The
homotopy relation ~o generated by the empty set is the
smallest homotopy relation.

If p ~0 4, we say two paths p and q are strictly homotopic.

If there is a finite subset B of || such that ~p, = I, (£, E)
has finite homotopy type and B is called a finite homotopy
base for it. If the empty set generates ||, that is,-0 =1,

(X, E)) is strictly aspherical.

2. Homotopy reduction systems

In this section (2, E) is a fixed monoid presentation and
I =T(Z, E).

A subset B of || is a homotopy reduction system; B is a set

of pairs of parallel paths, and an element (p, q) of B is
called a rule and written p ~ q. For two paths p and g, we
write p ~>5 4, if there are x, y € E*, P, Py € P(I') and r ~> s
€ B such that

p =pye(x-r-y)ep,, a = plo(x-s-y)opz-
The reflexive and transitive closure and the reflexive,

* *
and <>,

is denoted by ~>B B

symmetric transitive closure of ~>B

respectively.
B is noetherian, if there is no infinite sequence of
reductions:

~> ~> ~> P ~>

P g Py =g -+ P Pj 3

B is confluent, if for any paths p, q and r such that p ~*

B 4
* . . * *
B r, there is a path s such that q ~>B S, r ~>B S.

A path p is irreducible with respect to B, if there is no

and p ~

q such that p ~ If B is noetherian and cohfluent, then

B 4
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for any path p there is a unique irreducible path p such that p

~>; p, which is called the canonical form of p with respect to

~>B .

The relation «»g is contained in the homotopy relation ~

generated by B. A system B is called complete, if it is

B

noetherian and confluent and ¢»g = ~g- If B is complete, then

p~Bq“=p=Q°
A system B is reduced, if for any (p, q) € B, p is
irreducible under B - {(p, q)} and q is irreducible under B. B

is simple, if any (p, q) € B cannot be written as

A}

°oXryep", Q@ = p'eXSyep"

”

p =D

with paths p', p" and x, y € >* such that at least one of P,

p", Xx and y is non-trivial. These p', p", X and y are the
coats of (p, q).

Two reduction systems B, and B2 are equivalent, if ~ =

1 Bl
By
Theorem 2.1 For any complete homotopy reduction system B
generating ||, there is a reduced simple complete system B

generating B such that |B| £ |B].

Let B be a reduction system. Let r and s be two subpaths
of a path p; P = QeXryet = q'ex'sy'et' with paths q, t, q', t’

Al

and x, y, x', y' € E*. r is left to s in p if the length of q
is shorter than that of q'. A sequence of reductions is 2
left-most, if in each step of the reductions a rule is applied-
to a left-most applicable subpath. If the system B is simple
and reduced, a left-most applicable subpath is unique, and so a
sequence of the left-most reductions starting with given path
is unique.

Let p and q be parallel paths in T = I'(Z, E). A sequence
of two-way reductions from p to q is a sequence

h: p0 > p2 &> ..., &> p

B B "n
q. Pi “«> Pi+l
with respect to B U Bwl, g1 - {b_llb € B}, where b~

B

with qy = P and qQ, = is a one-step reductions

1 is the
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reverse reduction of b. The path p is the source and q is the
target of h and are denoted by 6(h) and t(h), respectively. h
is a (homotopy) reduction cycle, if o6(h) = t(h).

Let h be a sequence of (two-way) reductions between
parallel paths'p and q. Let x, y € 2* and s and t be paths
such that t(s) = x06(p)y and 6(t) = xt(p)y. Then s<.xpyst and
SeXqyet are parallel path and we have a sequence of reductions
seXx-h-yot between them, which coincides with h on the subpath p
and does not affect the outside. Let g be another sequence of
reductions from q to r, then hy%g denotes the conjunction of
them; hyvg is the reduction sequence from p to r. We give less
priority to the operation ¥ over - and ., thus, for example,
(sex-h-yoet)ykg is written as se.xhye.tyyg. The reverse sequence

of reductions of h is denoted by h_l.

3. Critical pairs

Two paths p and q are coaxal, if there are x, x', y, ¥' €
=* such that X-p:x' =y-q-y'. The foursome (x, X', y, y') is
an adjuster for p and q. An adjuster with the length |xx'yy'|

minimal is unique and called the minimal adjuster for p and q.

If (x, X', ¥y, ¥') is minimal, x or x' and y or y' are empty
words.

Let pl ~> ql, p2 ~> q2 € B. Suppose p1 = plotl, p2 =
t opé with coaxal t, and t., and nontrivial pi and pé. In this

2 1 2
situation we say that p1 ~> a, overlaps with P, ~ a, on the

left. Let (x, X', ¥, ¥y') be the minimal adjuster for tl and
= X:py:X' e¥:Py Y (= p) and

°Y-q2-Y'. We call the

L] 1]

t2. Then we have X-pl-X' oy-pé-y
p ~>B x'ql'x °Y'p2'y

pair of paths

» P ~>p X-pi-x

A |

(x-q;-X" ¢ y-P,y-¥", X-P1-X"' 0y-q,-¥")
a critical pair of overlapping type. Next suppose P, =

plotlop1 and tl and p2 are coaxal. Let (x, X', ¥, ¥') be the

A}

minimal adjuster for them. Then we have x-pl-x =
°Y-Py-Y
°Y-Q5-Y
(x-qq-x

1] Al * 1]

X-p;-X ° X-pj-X (= p) and p ~>p X-q;-X', p ~>

xapi-x ox-pi-x'. We call

°¥-Qy-Y' e X-py-X")

, X-pi-x
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a critical pair of inclusion type. If B is reduced, there is

no critical pair of inclusion type. ‘
A critical pair (r, s) is resolvable, if there is a path t

*

such that r ~>g t and s ~>B t. Since locally confluent .

noetherian system are confluent ([1], [3]), we have

Theorem 3.1. A noetherian reduction system is confluent,

if and only if all the critical pairs are resolvable.

We consider the following subsets of |:

- -1 -
B, = {ece > i le=(u, v) e E}
and
By = {u;X-e,ee, XV, ~> e;-XUyeV X-e, |
*
XxXeX , e

1= (ul, vl), e, = (uz, V2) € E}.
Let B be a homotopy reduction system for (Z, E) generating
the parallelism |l. We suppose that B N (B, N By) = #. Let C
be the set of critical pairs associated with B = BO U BQ U B.
Let b1 = (p, q) € BQ, where
P = U,Xe,oe. XV q = e .xu

1772 "17"2° 1772 1772’

with el = (ul, vl) and e2 = (u2, VZ).e E. Let b2 = (s, t) be a

rule in B which overlaps with b1 on the left, that is, s =

oV, Xe

welzos2 with w, z € Z* such that z is a prefix of xv2 or xv2 is

a prefix of z. If z is a prefix of x, we say that they overlap
weakly, otherwise we say that they overlap strongly.

Al

If b, overlaps weakly with b, on the left, then x = zx

1 2
for some x' € X and wposzx'v2 = wulxezosx'vz. Then there are
one-step reductions
kl: WpeS X'V, ~> WQes,X'v,

2 2 BQ
and

kzz wulzx ezosx V2 ~>B wulxezotx v2,

and we have a critical pair (wqos2X Vo, WU Xe,

critical pair is always resolvable because we have the

otx'vz). This

following reductions:

Jl: WQOSZX V2 = welxuzowleezoszx V2
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~ we, Xu,eS,X uzor(s)x e, = sX uzor(s)x e,

BQ 1772
~>n tx uzot(t)x €ys
and
Jgt wulxezotx vy §>BQ tx uzor(t)x ey -
If b1 weakly overlaps with b2 on the right, that is, s =
S, °ze,W and w is a suffix of x; X = x'z. Then we have

ulx slopw = ulx Soelxvzw and we have a critical pair

(ulx'toe XV,W, u x'sloqw). This critical pair is also

1772 1
resolvable in a similar way.

Theorem 3.2. If E and B is finite, then there are only a
finite number of strong overlappings between B’2 and B, and
there are only a finite number of critical pairs of inclusion

type for B.

Theorem 3.4. Assume that E is non-special and B = B, U By
U B is noetherian. ‘Then B is complete, if and only if the
following four types of critical pairs are all resolvable:
critical pairs coming from (1) overlapping between rules from
B0 and B, (2) overlapping between rules inside B, (3) strong
overlapping between rules from BQ and B, and (4) inclusion

between rules from B and B.

Corollary 3.5. Assume that both E and B is finite and B =
BO U B-Q U B is noetherian, then it is decidable whether B is

complete.

4. The (coated) left canonical reduction system

An equation (u, v) € E is special, if u = 1 or v = 1. The
system E is special, if all the equations in it are special. E
is non-special, if every equation in it is not special.

The simplest complete system called the left canonical

reduction system is given in the following

Theorem 4.1. If (X, E) is non-special, then B = B, U BQ
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is a complete reduction system such that ~8 = o

Thus, for a non-special presentation, any path p has the
unique canonical form p with p ~0 p.

Corollary 4.2. For parallel paths p and q, p ~o q if and

only if p = q. In particular, for a closed path p at x € X, p
~o ix if and only if p = ix.

Corollary 4.3. Let (Z, E) be a finite non-special
presentation. For given paths p and q it is decidable whether
b ~0 q.

Let X, y € 3. We say that x overlaps with y on the left

if there is u # 1 such that x = x,u, y = uy1 for some x

y Y
1 1 1
with lel # 1. Let OVL(x, y) be the set of all such words u.
Since it is convenient to include the perfect overlapping, we
define the set OVL(x, ¥y) by

OVL(x, v) = {ue 3 | x = XU, ¥ = uy;, X, y; € =%y,

Let (Z, E) be a non-special presentation. For e = (u, v)
€ E, let L = A(e) (resp. P = P(e)) be the maximal common prefix
(resp. suffix) of u and v. We call 1 (resp. P) the left
(resp. right) coat of e.

Let el = (ul, Vl) and e2 = (uz, V2) be equations from E.
Let P (resp. A) be the right (resp. left) coat of e, (resp. .
e2); u, = ulp, v, = vlp, u, = luz, v, = lvz. For a word 7 €
OVL(P, A); P =p'T, L = TA', we consider a pair bT =
(ulP -ezoell vy, el-l u2°V1p -ez) of parallel paths in I'. Let
Bc be the set of all these pairs bT of paths in T.

An equation of the form (v, u) (or (u, v)) with u € =* and

v e uz' n 3%u is called subspecial. A system E is

non-subspecial if it contains no subspecial equation.

Theorem 4.4. If E is non-subspecial, then the reduction

system B = BO U BQ U Bc is complete.
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The B in Theorem 4.1 is called the coated left canonical

reduction system. ‘If this Bc generates |, then E is called

coated aspherical.

5. Low-dimensional homology
Let a monoid M be given by a presentation (X, E). For x €

', x denotes the image of X in M. Let R be an orientation of

E, that is, R is an asymmetric relation such that E = R U R_l,

where R°1 = {(v, uw)|(u, v) € R). The oriented R is called a

rewriting system for M. Let A = ZM be the monoid algebra of M

over Z. The additive group Z is considered to be a right
A-module by the trivial action:

1-x =1
for x € M.

We say that M satisfies the (right) homological finiteness

condition FPn, if there is a resolution of Z:

F,—= F 4 = ... > Fy— I

such that Fi are finitely generated free right A-modules for i
=0, ..., n.

The algebra A itself is considered to be the free cyclic
right A-module which we denote by FO' There is a natural
surjection é&: F0 — Z, which is an A-homomorphism defined by
e(1) = 1.

Let F1 be the free right A-module generated by the set X.

We write <a> for the generator of F. corresponding to a € X.

1

For a word x = al-‘--an € 2*, we define an element <x> of F1 by

<X> = <a,>»-.-a,---a_+ <a,>-a,---a_ + ... + <a_>.
1 2 n 2 3 n n

Let F2 be the free right A-module generated by the set R. By
<r> we denote the corresponding generator tor € R.

7 Let B be a homotopy base for (Z, E). Let F3 be the free
right A-module generated by B. Again <b> denote the generator

corresponding to b € B. For e = (u, v) € E define
_ <r> if r = (u, v) € R
<e> = {-<r> if r = (v, u) € R.
Let p = Xi€1¥qe.--0X ey, be a path in I = T(Z, E), where Xs
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y; € =* and e; are edges. Then, define an element <p> ovaz by
<p> = <el>.yl + ...t <en>-yn.

Now, we define A-homomorphisms & F. - F d,: F, - F

1° 1 0’ %27 Y2 1

and 63: Fs-* F2 by

al(<a>) =a-1
for a € X,

32(<r>) = <u> - <v>
for a rule r = (u, v) € R, and

63(<b>) = <p> - <q>
for b = (p, q) € B. Easily we find

eoal = al.az = 62o&3 = 0,
and hence we have a complex:

Fg ’s F, ‘2 F, il Fo-f Z — 0. (5.1)

Theorem 5.1 ([2], [5], [8]). The complex (5.1) is exact.

Theorem 5.2. If a finitely presented monoid M has finite
3 If M has
a strictly aspherical presentation, then there is a free

homotopy type, then it satisfies right and left FP

resolution over Z:

a a &
2 1
0 — F2 - Fl and FO - Z - 0,

and M has cohomological dimension at most 2.

Now suppose that B is a homotopy base and B = B0 U BQ UB
is a simple reduced complete reduction system. Let C be the
set of critical pairs associated with B, and let C (c C) be
the set of critical pairs of type (1) - (3) in Theorem 3.4
(since B is reduced we need not consider the critical pairs of
type (4)).

Let ¢ = (p, q) € C be a critical pair which comes from

prath r by one-step reductions hlz r ~_, p and h2: r ~>

q.
B B
Since B is complete, there are sequences of reductions from p
tor and q to r, where r is the the canonical form of r. Let
h., and h4 be the left-most reductions from p and q to r

3
respectively. Then, we have a cycle of two-way reductions:
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_ -1,,.-1
H(c) = hlﬁfh3i’irh4 7ﬁrh2 ,
which is called the reduction cycle associated with c.

Now we define a ffee A-module F4 and a boundary map 64:
F4-—> F3 as follows. Let F4 be the free right A-module
generated by C, and <c> denotes the generator corresponding to

¢ € C. The A-homomorphism @, is defined by

4
04(<c>) = <H(c)>

for c¢c € C. We can show that 33.3 = 0, and we have a

4
complex:

4 3 2 1
F4 - F3 - F2 - Fl — FO - Z — 0. (5.2)

Theorem 5.3. If B = B, UByUB is a complete reduction
system, then the complex (5.2) is exact.

Theorem 5.4. If M is given by a finite presentation which
admits a finite homotopy base B such that B = B, U By UB (or B

= B, UB,. U B) is a complete system, then M satisfies FP,.

Corollary 5.5. If M is given by a finite non-subspecial

presentation that is coated aspherical, then M satisfies FP4.

References

[1] R. Book and F. Otto, String Rewriting Systems, New York,
1993. '

[2] R. Cremanns and F. Otto, Finite derivation type implies
the homological finiteness condition FP3, J. Symbolic
Comp. 18 (1994), 91-112.

[3] G. Huet, Confluent reductions: abstract properties and
applications to term rewriting systems, J. ACM 27 (1980),
T797-821.

[4] Y. Kobayashi, Homotopy reduction systems - asphericity and
low dimensional homology -, to appear.

[5] Y. Lafont, A new finiteness condition for monoids presented
by complete rewriting systems (after Craig C. Squier), J.



Pure Appl. Algebra 98 (1995), 229-244.

[6] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory,
Springer, Berlin, 1977

[7] R. Peiffer, Uber Identitaten zwischen Relationen, Math.
Ann. 121 (1949), 67-99.

[8] J. Pride, Low-dimensional homotopy theory for monoids,
Intern. J. Algebra Comp., to appear.

[9] C.C. Squier, F.Otto and Y. Kobayashi, A finiteness
condition for rewriting systems, Theoret. Comp. Sci. 131
(1994), 271-294.

99



