Low dimensional Homotopy and homology for monoid presentations

東邦大学理学部 小林美治 (Yuji Kobayashi)

The homotopy theory introduced by Squier [9] gives a very general framework for geometrical approach to monoid presentations. It is considered to include the classical geometrical theory of group presentations ([6], [7]). In this note we report recent results on a relation between the homotopical and the homological finiteness conditions of monoids. The details will be given in [4].

1. Homotopy relations on the derivation graphs

Let Σ be a finite alphabet and Σ^* be the free monoid generated by Σ . Let E be a irreflexive symmetric relation on Σ^* . Let $=_E$ denote the congruence on Σ^* generated by E, that is, $=_E$ is the smallest compatible equivalence relation containing E. Let $M = \Sigma^*/=_E$ be the quotient monoid. We say M is presented by a presentation (Σ, E) and write as $M = M(\Sigma, E)$.

We define a graph $\Gamma = \Gamma(\Sigma, E)$ called the <u>derivation graph</u> of (Σ, E) as follows: The set of vertices is Σ^* , and for $e = (u, v) \in E$ and $x, y \in \Sigma^*$, (x; u, v; y) is an edge from xuy to xvy. An equation $e = (u, v) \in E$ is identified with the naked edge (1; u, v; 1). Since E is symmetric, if e = (x; u, v; y) is an edge, then (x; v, u; y) is also an edge, which is called the reverse of e and written e^{-1} .

Let P(x, y) denote the set of (directed) paths from the source x to the target y in Γ and $P(\Gamma)$ the set of all the paths in Γ . The source and the target of a path p are denoted by $\sigma(p)$ and $\tau(p)$, respectively. For two paths p and q such that $\tau(x) = \sigma(y)$, the path poq connecting p and q is defined in the obvious manner. For a path $p = e_1 \cdot e_2 \cdot \ldots \cdot e_n$ its reverse $p^{-1} = e_1 \cdot e_2 \cdot \ldots \cdot e_n$

 $e_n^{-1} \circ \ldots \circ e_2^{-1} \circ e_1^{-1}$ is a path from $\tau(p)$ to $\sigma(p)$. A path p with $\sigma(p) = \tau(p)$ is called a closed path with base point $\sigma(p) = \tau(p)$. The set P(x, x) of closed path with base point x is denoted simply by P(x). A <u>cycle</u> is a simple closed path, that is, a closed path which does not pass the same edge twice. The trivial cycle i_x with base point x is the cycle of length 0 at x.

The free monoid Σ^* acts on $P(\Gamma)$ on the both sides as follows: Let z, $w \in \Sigma^*$. For an edge e = (x; u, v; y) define $z \cdot e \cdot w = (zx; u, v; yw)$,

and for a path $p = e_1 \cdot e_2 \cdot \ldots \cdot e_n$ define

$$z \cdot p \cdot w = (z \cdot e_1 \cdot w) \cdot (z \cdot e_2 \cdot w) \cdot \dots \cdot (z \cdot e_n \cdot w).$$

Two paths p and q with the same source and the same target are called parallel, and written as $p \parallel q$.

An equivalence relation \sim on P(Γ) is a <u>homotopy relation</u> (Squier, Otto and Kobayashi [9]), if it is contained in \parallel and satisfies the following four conditions.

- (H1) For any $x \in \Sigma^*$ and $e_1 = (u_1, v_1)$, $e_2 = (u_2, v_2) \in E$, $e_1 \cdot xu_2 \cdot v_1 x \cdot e_2 \sim u_1 x \cdot e_2 \cdot e_1 \cdot xv_2$.
- (H2) For any p, $q \in P(\Gamma)$ and x, $y \in \Sigma^*$, p ~ q implies $x \cdot p \cdot y \sim x \cdot q \cdot y$.
- (H3) For any p, q, r, s \in P(Γ) with τ (r) = σ (p) = σ (q) and σ (s) = τ (p) = τ (q),

 $p \sim q$ implies $r \cdot p \cdot s \sim r \cdot q \cdot s$.

(H4) For any $e = (u, v) \in E$, $e \cdot e^{-1} \sim i_{11}$.

Let \sim be a homotopy relation. The equivalence class of p \in P(Γ) modulo the relation \sim is written as [p]_ or simply as [p]. The quotients P(Γ)/ \sim is denoted by $\pi_{\sim}(\Gamma) = \pi_{\sim}(\Sigma, E)$. The operation \circ of P(Γ) induces the operation \circ of $\pi_{\sim}(\Gamma)$ by [p] \circ [q] = [p \circ q]. The action of Σ^* on $\pi_{\sim}(\Gamma)$ is also induced as $x \cdot [p] \cdot y = [x \cdot p \cdot y]$.

We can also consider the quotients $P(x, y)/\sim$ and $P(x)/\sim$, which are denoted by $\pi_{\sim}(x, y)$ and $\pi_{\sim}(x)$, respectively. Then,

 $\pi_{\sim}(\Gamma) = \bigcup_{\substack{x,y \in \Sigma^* \\ x,y \in \Sigma}} \pi_{\sim}(x,y)$ forms a groupoid and $\pi_{\sim}(x)$ forms a group with operation •. The group $\pi_{\sim}(x)$ is called the homotopy group at x with respect to \sim . In particular, $\pi_0(x)$ denotes the homotopy group at x with respect to $\pi_0(x)$.

The parallelism $\|$ is the largest homotopy relation. Since homotopy relations are closed under intersection, for any subset B of $\|$, there is the smallest homotopy relation \sim_B containing B, called the homotopy relation generated by B. The homotopy relation \sim_0 generated by the empty set is the smallest homotopy relation.

If p \sim_0 q, we say two paths p and q are <u>strictly homotopic</u>. If there is a finite subset B of $\|$ such that $\sim_B = \|$, (Σ, E) has <u>finite homotopy type</u> and B is called a <u>finite homotopy base</u> for it. If the empty set generates $\|$, that is, $\sim_0 = \|$, (Σ, E)) is <u>strictly aspherical</u>.

2. Homotopy reduction systems

In this section (Σ , E) is a fixed monoid presentation and Γ = $\Gamma(\Sigma, E)$.

A subset B of $\|$ is a <u>homotopy reduction system</u>; B is a set of pairs of parallel paths, and an element (p, q) of B is called a <u>rule</u> and written $p \rightsquigarrow q$. For two paths p and q, we write $p \rightsquigarrow_B q$, if there are x, $y \in \Sigma^*$, p_1 , $p_2 \in P(\Gamma)$ and $r \rightsquigarrow s \in B$ such that

B is $\underline{\text{noetherian}}$, if there is no infinite sequence of reductions:

 $p_1 \sim_B p_2 \sim_B \cdots \sim_B p_1 \sim_B \cdots$

B is <u>confluent</u>, if for any paths p, q and r such that $p \rightsquigarrow_B^* q$ and $p \rightsquigarrow_B^* r$, there is a path s such that $q \rightsquigarrow_B^* s$, $r \rightsquigarrow_B^* s$.

A path p is <u>irreducible</u> with respect to B, if there is no q such that p \leadsto_B q. If B is noetherian and confluent, then

for any path p there is a unique irreducible path \hat{p} such that p $\Rightarrow_B^* \hat{p}$, which is called the <u>canonical form</u> of p with respect to \Rightarrow_B .

The relation \Leftrightarrow_B^* is contained in the homotopy relation \sim_B generated by B. A system B is called <u>complete</u>, if it is noetherian and confluent and $\Leftrightarrow_B^* = \sim_B$. If B is complete, then $p \sim_B q \Leftrightarrow \hat{p} = \hat{q}$.

A system B is <u>reduced</u>, if for any $(p, q) \in B$, p is irreducible under B - $\{(p, q)\}$ and q is irreducible under B. B is simple, if any $(p, q) \in B$ cannot be written as

 $p = p' \bullet xry \bullet p'', \ q = p' \bullet xsy \bullet p''$ with paths p', p'' and x, y $\in \Sigma^*$ such that at least one of p', p'', x and y is non-trivial. These p', p'', x and y are the \underline{coats} of (p, q).

Two reduction systems \mathbf{B}_1 and \mathbf{B}_2 are <u>equivalent</u>, if $\sim_{\mathbf{B}_1}$ = $\sim_{\mathbf{B}_2}$.

Theorem 2.1 For any complete homotopy reduction system B generating $\|$, there is a reduced simple complete system \overline{B} generating B such that $|\overline{B}| \le |B|$.

Let B be a reduction system. Let r and s be two subpaths of a path p; $p = q \cdot xry \cdot t = q' \cdot x'sy' \cdot t'$ with paths q, t, q', t' and x, y, x', y' $\in \Sigma^*$. r is <u>left to</u> s in p if the length of q is shorter than that of q'. A sequence of reductions is <u>left-most</u>, if in each step of the reductions a rule is applied to a left-most applicable subpath. If the system B is simple and reduced, a left-most applicable subpath is unique, and so a sequence of the left-most reductions starting with given path is unique.

Let p and q be parallel paths in Γ = $\Gamma(\Sigma, E)$. A sequence of two-way reductions from p to q is a sequence

h: $p_0 \Leftrightarrow_B p_2 \Leftrightarrow_B \ldots \Leftrightarrow_B p_n$ with $q_0 = p$ and $q_n = q$. $P_i \Leftrightarrow_{i+1} p_{i+1}$ is a one-step reductions with respect to $B \cup B^{-1}$, $B^{-1} = \{b^{-1} | b \in B\}$, where b^{-1} is the

reverse reduction of b. The path p is the source and q is the target of h and are denoted by $\sigma(h)$ and $\tau(h)$, respectively. h is a (homotopy) reduction cycle, if $\sigma(h) = \tau(h)$.

Let h be a sequence of (two-way) reductions between parallel paths p and q. Let $x, y \in \Sigma^*$ and s and t be paths such that $\tau(s) = x\sigma(p)y$ and $\sigma(t) = x\tau(p)y$. Then $s \cdot xpy \cdot t$ and $s \cdot xqy \cdot t$ are parallel path and we have a sequence of reductions $s \cdot x \cdot h \cdot y \cdot t$ between them, which coincides with h on the subpath p and does not affect the outside. Let g be another sequence of reductions from q to r, then $h \not \sim g$ denotes the conjunction of them; $h \not \sim g$ is the reduction sequence from p to r. We give less priority to the operation $\not \sim g$ over $g \cdot g$ and $g \cdot g$, thus, for example, $g \cdot g \cdot g \cdot g \cdot g \cdot g$ is written as $g \cdot g \cdot g \cdot g \cdot g$. The reverse sequence of reductions of h is denoted by $g \cdot g \cdot g \cdot g$.

3. Critical pairs

Two paths p and q are $\underline{\operatorname{coaxal}}$, if there are x, x', y, y' $\in \Sigma^*$ such that $x \cdot p \cdot x' = y \cdot q \cdot y'$. The foursome (x, x', y, y') is an $\underline{\operatorname{adjuster}}$ for p and q. An adjuster with the length |xx'yy'| minimal is unique and called the $\underline{\operatorname{minimal}}$ $\underline{\operatorname{adjuster}}$ for p and q. If (x, x', y, y') is minimal, x or x' and y or y' are empty words.

Let $p_1 \rightarrow q_1$, $p_2 \rightarrow q_2 \in B$. Suppose $p_1 = p_1' \cdot t_1$, $p_2 = t_2 \cdot p_2'$ with coaxal t_1 and t_2 and nontrivial p_1' and p_2' . In this situation we say that $p_1 \rightarrow q_1$ overlaps with $p_2 \rightarrow q_2$ on the left. Let (x, x', y, y') be the minimal adjuster for t_1 and t_2 . Then we have $x \cdot p_1 \cdot x' \cdot y \cdot p_2' \cdot y' = x \cdot p_1' \cdot x' \cdot y \cdot p_2 \cdot y'$ (= p) and $p \rightarrow_B x \cdot q_1 \cdot x' \cdot y \cdot p_2' \cdot y'$, $p \rightarrow_B x \cdot p_1' \cdot x' \cdot y \cdot q_2 \cdot y'$. We call the pair of paths

 $\begin{array}{c} (x \cdot \textbf{q}_1 \cdot \textbf{x}' \bullet \textbf{y} \cdot \textbf{p}_2' \cdot \textbf{y}', \ x \cdot \textbf{p}_1' \cdot \textbf{x}' \bullet \textbf{y} \cdot \textbf{q}_2 \cdot \textbf{y}') \\ \text{a } \underline{\text{critical pair of overlapping type}}. \quad \text{Next suppose } \textbf{p}_1 = \\ \textbf{p}_1' \bullet \textbf{t}_1 \bullet \textbf{p}_1'' \text{ and } \textbf{t}_1 \text{ and } \textbf{p}_2 \text{ are coaxal.} \quad \text{Let } (\textbf{x}, \textbf{x}', \textbf{y}, \textbf{y}') \text{ be the minimal adjuster for them.} \quad \text{Then we have } \textbf{x} \cdot \textbf{p}_1 \cdot \textbf{x}' = \\ \textbf{x} \cdot \textbf{p}_1' \cdot \textbf{x}' \bullet \textbf{y} \cdot \textbf{p}_2 \cdot \textbf{y}' \bullet \textbf{x} \cdot \textbf{p}_1'' \cdot \textbf{x}' \quad (= \textbf{p}) \text{ and } \textbf{p} \\ \textbf{x} \cdot \textbf{p}_1' \cdot \textbf{x}' \bullet \textbf{y} \cdot \textbf{q}_2 \cdot \textbf{y}' \bullet \textbf{x} \cdot \textbf{p}_1'' \cdot \textbf{x}'. \quad \text{We call} \\ (\textbf{x} \cdot \textbf{q}_1 \cdot \textbf{x}', \textbf{x} \cdot \textbf{p}_1' \cdot \textbf{x}' \bullet \textbf{y} \cdot \textbf{q}_2 \cdot \textbf{y}' \bullet \textbf{x} \cdot \textbf{p}_1'' \cdot \textbf{x}') \end{array}$

a <u>critical pair of inclusion type</u>. If B is reduced, there is no critical pair of inclusion type.

A critical pair (r, s) is <u>resolvable</u>, if there is a path t such that $r \rightsquigarrow_B^* t$ and $s \rightsquigarrow_B^* t$. Since locally confluent noetherian system are confluent ([1], [3]), we have

Theorem 3.1. A noetherian reduction system is confluent, if and only if all the critical pairs are resolvable.

We consider the following subsets of $\| : \|$

$$B_0 = \{ e \cdot e^{-1} \Rightarrow i_u \mid e = (u, v) \in E \}$$

and

Let B be a homotopy reduction system for (Σ , E) generating the parallelism $\|$. We suppose that B \cap (B₀ \cap B₂) = \emptyset . Let \overline{C} be the set of critical pairs associated with \overline{B} = B₀ \cup B₂ \cup B.

Let $b_1 = (p, q) \in B_0$, where

 $\mathsf{p} = \mathsf{u}_1 \mathsf{x} \mathsf{e}_2 \bullet \mathsf{e}_1 \mathsf{x} \mathsf{v}_2, \ \mathsf{q} = \mathsf{e}_1 \mathsf{x} \mathsf{u}_2 \bullet \mathsf{v}_1 \mathsf{x} \mathsf{e}_2,$

with e_1 = (u_1, v_1) and e_2 = (u_2, v_2) \in E. Let b_2 = (s, t) be a rule in B which overlaps with b_1 on the left, that is, s =

 $we_1z \cdot s_2$ with w, $z \in \Sigma^*$ such that z is a prefix of xv_2 or xv_2 is a prefix of z. If z is a prefix of x, we say that they <u>overlap</u> <u>weakly</u>, otherwise we say that they <u>overlap</u> <u>strongly</u>.

If b_1 overlaps weakly with b_2 on the left, then x = zx' for some $x' \in \Sigma^*$ and $wp \cdot s_2 x' v_2 = wu_1 x e_2 \cdot sx' v_2$. Then there are one-step reductions

$$k_1: wp \cdot s_2 x'v_2 \sim_{B_0} wq \cdot s_2 x'v_2$$

and

 k_2 : $wu_1zx'e_2 \circ sx'v_2 \gg_B wu_1xe_2 \circ tx'v_2$, and we have a critical pair $(wq \circ s_2x'v_2, wu_1xe_2 \circ tx'v_2)$. This critical pair is always resolvable because we have the following reductions:

$$j_1'$$
: $wq \circ s_2 x' v_2 = we_1 xu_2 \circ wv_1 xe_2 \circ s_2 x' v_2$

$$\sim_{B_{\varrho}} we_1 xu_2 \cdot s_2 x'u_2 \cdot \tau(s) x'e_2 = sx'u_2 \cdot \tau(s) x'e_2$$

 $\sim_{B} tx'u_2 \cdot \tau(t) x'e_2$,

and

 j_2' : $wu_1xe_2 \cdot tx'v_2 \sim_{B_0} tx'u_2 \cdot \tau(t)x'e_2$.

If b_1 weakly overlaps with b_2 on the right, that is, $s = s_1 \cdot ze_2 w$ and w is a suffix of x; x = x'z. Then we have $u_1 x' s_1 \cdot pw = u_1 x' s \cdot e_1 xv_2 w$ and we have a critical pair $(u_1 x' t \cdot e_1 xv_2 w, u_1 x' s_1 \cdot qw)$. This critical pair is also resolvable in a similar way.

Theorem 3.2. If E and B is finite, then there are only a finite number of strong overlappings between B_{ϱ} and B, and there are only a finite number of critical pairs of inclusion type for \overline{B} .

Theorem 3.4. Assume that E is non-special and $\overline{B} = B_0 \cup B_Q \cup B$ is noetherian. Then \overline{B} is complete, if and only if the following four types of critical pairs are all resolvable: critical pairs coming from (1) overlapping between rules from B_0 and B, (2) overlapping between rules inside B, (3) strong overlapping between rules from B_Q and B, and (4) inclusion between rules from \overline{B} and B.

Corollary 3.5. Assume that both E and B is finite and \overline{B} = $B_0 \cup B_{\Omega} \cup B$ is noetherian, then it is decidable whether \overline{B} is complete.

4. The (coated) left canonical reduction system

An equation $(u, v) \in E$ is <u>special</u>, if u = 1 or v = 1. The system E is special, if all the equations in it are special. E is <u>non-special</u>, if every equation in it is not special.

The simplest complete system called the left canonical reduction system is given in the following

Theorem 4.1. If (Σ, E) is non-special, then B = B₀ \cup B₀

is a complete reduction system such that \sim_B = \sim_0 .

Thus, for a non-special presentation, any path p has the unique canonical form \hat{p} with p \sim_0 $\hat{p}.$

Corollary 4.2. For parallel paths p and q, p \sim_0 q if and only if $\hat{p} = \hat{q}$. In particular, for a closed path p at $x \in \Sigma^*$, p $\sim_0 i_x$ if and only if $\hat{p} = i_x$.

Corollary 4.3. Let (Σ , E) be a finite non-special presentation. For given paths p and q it is decidable whether p \sim_0^- q.

Let $x, y \in \Sigma^*$. We say that x overlaps with y on the left if there is $u \neq 1$ such that $x = x_1u$, $y = uy_1$ for some x_1 , y_1 with $x_1y_1 \neq 1$. Let OVL(x, y) be the set of all such words u. Since it is convenient to include the perfect overlapping, we define the set $\overline{OVL}(x, y)$ by

$$\overline{\text{OVL}}(x, y) = \{ u \in \Sigma^+ \mid x = x_1 u, y = u y_1, x_1, y_1 \in \Sigma^* \}.$$

Let (Σ, E) be a non-special presentation. For e = (u, v) $\in E$, let $\lambda = \lambda(e)$ (resp. $\rho = \rho(e)$) be the maximal common prefix (resp. suffix) of u and v. We call λ (resp. ρ) the <u>left</u> (resp. <u>right</u>) <u>coat</u> of e.

Let $e_1 = (u_1, v_1)$ and $e_2 = (u_2, v_2)$ be equations from E. Let ρ (resp. λ) be the right (resp. left) coat of e_1 (resp. e_2); $u_1 = u_1' \rho$, $v_1 = v_1' \rho$, $u_2 = \lambda u_2'$, $v_2 = \lambda v_2'$. For a word $\tau \in \overline{\text{OVL}}(\rho, \lambda)$; $\rho = \rho' \tau$, $\lambda = \tau \lambda'$, we consider a pair $b_{\tau} = (u_1' \rho' \cdot e_2 \cdot e_1 \lambda' v_2', e_1 \cdot \lambda' u_2' \cdot v_1' \rho' \cdot e_2)$ of parallel paths in Γ . Let B_C be the set of all these pairs b_{τ} of paths in Γ .

An equation of the form (v, u) (or (u, v)) with $u \in \Sigma^*$ and $v \in u\Sigma^* \cap \Sigma^*u$ is called <u>subspecial</u>. A system E is <u>non-subspecial</u> if it contains no subspecial equation.

Theorem 4.4. If E is non-subspecial, then the reduction system B = $B_0 \cup B_0 \cup B_c$ is complete.

The B in Theorem 4.1 is called the <u>coated left canonical</u> reduction <u>system</u>. If this B_c generates $\|$, then E is called <u>coated aspherical</u>.

5. Low-dimensional homology

Let a monoid M be given by a presentation (Σ, E) . For $x \in \Sigma^*$, \overline{x} denotes the image of x in M. Let R be an <u>orientation</u> of E, that is, R is an asymmetric relation such that $E = R \cup R^{-1}$, where $R^{-1} = \{(v, u) | (u, v) \in R\}$. The oriented R is called a rewriting system for M. Let $A = \mathbb{Z}M$ be the monoid algebra of M over \mathbb{Z} . The additive group \mathbb{Z} is considered to be a right A-module by the trivial action:

$$1 \cdot x = 1$$

for $x \in M$.

We say that M satisfies the (<u>right</u>) <u>homological finiteness</u> condition FP_n, if there is a resolution of \mathbb{Z} :

The algebra A itself is considered to be the free cyclic right A-module which we denote by \mathbf{F}_0 . There is a natural surjection $\boldsymbol{\epsilon}\colon \mathbf{F}_0 \to \mathbb{Z}$, which is an A-homomorphism defined by $\boldsymbol{\epsilon}(1)=1$.

Let F_1 be the free right A-module generated by the set Σ . We write <a> for the generator of F_1 corresponding to a $\in \Sigma$.

For a word $x = a_1 \cdot \cdot \cdot a_n \in \Sigma^*$, we define an element $\langle x \rangle$ of F_1 by $\langle x \rangle = \langle a_1 \rangle \cdot \overline{a_2 \cdot \cdot \cdot a_n} + \langle a_2 \rangle \cdot \overline{a_3 \cdot \cdot \cdot a_n} + \dots + \langle a_n \rangle$.

Let F_2 be the free right A-module generated by the set R. By < r > we denote the corresponding generator to $r \in R$.

Let B be a homotopy base for (Σ, E) . Let F_3 be the free right A-module generated by B. Again
b> denote the generator corresponding to b \in B. For e = $(u, v) \in E$ define

Let $p = x_1 e_1 y_1 \cdot ... \cdot x_n e_n y_n$ be a path in $\Gamma = \Gamma(\Sigma, E)$, where x_i ,

 $y_i \in \Sigma^*$ and e_i are edges. Then, define an element of F_2 by = < $e_1 > \cdot \overline{y_1} + \dots + < e_n > \cdot \overline{y_n}$.

Now, we define A-homomorphisms $\partial_1: F_1 \to F_0$, $\partial_2: F_2 \to F_1$

and
$$\partial_3$$
: $F_3 \rightarrow F_2$ by $\partial_1(\langle a \rangle) = \overline{a} - \overline{1}$

for $a \in \Sigma$,

$$\partial_2(\langle r \rangle) = \langle u \rangle - \langle v \rangle$$

for a rule $r = (u, v) \in R$, and

$$\partial_3() = - ""$$

for $b = (p, q) \in B$. Easily we find

$$\varepsilon \cdot \partial_1 = \partial_1 \cdot \partial_2 = \partial_2 \cdot \partial_3 = 0$$
,

and hence we have a complex:

$$F_{3} \xrightarrow{\partial_{3}} F_{2} \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \xrightarrow{\varepsilon} \mathbb{Z} \to 0. \tag{5.1}$$

Theorem 5.1 ([2], [5], [8]). The complex (5.1) is exact.

Theorem 5.2. If a finitely presented monoid M has finite homotopy type, then it satisfies right and left ${\rm FP}_3$. If M has a strictly aspherical presentation, then there is a free resolution over ${\rm Z}$:

$$0 \rightarrow F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0,$$

and M has cohomological dimension at most 2.

Now suppose that B is a homotopy base and $\overline{B}=B_{\underline{0}}\cup B_{\underline{Q}}\cup B$ is a simple reduced complete reduction system. Let \overline{C} be the set of critical pairs associated with \overline{B} , and let C (\subset \overline{C}) be the set of critical pairs of type (1) - (3) in Theorem 3.4 (since \overline{B} is reduced we need not consider the critical pairs of type (4)).

Let $c = (p, q) \in C$ be a critical pair which comes from path r by one-step reductions $h_1 \colon r \rightsquigarrow_B p$ and $h_2 \colon r \rightsquigarrow_B q$. Since B is complete, there are sequences of reductions from p to \hat{r} and q to \hat{r} , where r is the the canonical form of r. Let h_3 and h_4 be the left-most reductions from p and q to \hat{r} respectively. Then, we have a cycle of two-way reductions:

 $H(c) = h_1 h_3 h_4^{-1} h_2^{-1},$

which is called the reduction cycle associated with c.

Now we define a free A-module F_4 and a boundary map ϑ_4 : $F_4 \to F_3$ as follows. Let F_4 be the free right A-module generated by C, and <c> denotes the generator corresponding to $c \in C$. The A-homomorphism ϑ_4 is defined by

$$\partial_{\Delta}(\langle c \rangle) = \langle H(c) \rangle$$

for $c \in C$. We can show that $\partial_3 \cdot \partial_4 = 0$, and we have a complex:

$$F_{4} \xrightarrow{\partial_{4}} F_{3} \xrightarrow{\partial_{3}} F_{2} \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \xrightarrow{\varepsilon} \mathbb{Z} \to 0. \tag{5.2}$$

Theorem 5.3. If $\overline{B} = B_0 \cup B_{\varrho} \cup B$ is a complete reduction system, then the complex (5.2) is exact.

Theorem 5.4. If M is given by a finite presentation which admits a finite homotopy base B such that $\overline{B} = B_0 \cup B_{\ell} \cup B$ (or $\overline{B} = B_0 \cup B_r \cup B$) is a complete system, then M satisfies FP_4 .

Corollary 5.5. If M is given by a finite non-subspecial presentation that is coated aspherical, then M satisfies ${\rm FP}_4$.

References

- [1] R. Book and F. Otto, String Rewriting Systems, New York, 1993.
- [2] R. Cremanns and F. Otto, Finite derivation type implies the homological finiteness condition FP₃, J. Symbolic Comp. **18** (1994), 91-112.
- [3] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J. ACM **27** (1980), 797-821.
- [4] Y. Kobayashi, Homotopy reduction systems asphericity and low dimensional homology -, to appear.
- [5] Y. Lafont, A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), J.

- Pure Appl. Algebra 98 (1995), 229-244.
- [6] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977
- [7] R. Peiffer, Über Identitäten zwischen Relationen, Math. Ann. 121 (1949), 67-99.
- [8] J. Pride, Low-dimensional homotopy theory for monoids, Intern. J. Algebra Comp., to appear.
- [9] C.C. Squier, F.Otto and Y. Kobayashi, A finiteness condition for rewriting systems, Theoret. Comp. Sci. 131 (1994), 271-294.