On Termination of One-Rule String Rewriting Systems

天理大学教育研究科
辻（武宮）佳代子（Kayoko Shikishima-Tsuji）
京都産業大学総合学部
勝良 昌司（Masashi Katsura）
東邦大学理学部
小林 弥治（Yuji Kobayashi）

Let Σ be a finite alphabet. The free monoid and the free semigroup generated by Σ are denoted by Σ^* and Σ^+, respectively. The length of a word x in Σ^* is denoted by $|x|$. For $x, y \in \Sigma^*$, we set $\text{OVL}(x, y) = \{z \in \Sigma^3 | x = uz, \ y = vz \text{ for some } u, v \in \Sigma^*\}$. A rewriting system R on Σ is a subset of $\Sigma^* \times \Sigma^*$. An element (l, r) in R is denoted by $l \rightarrow r$. If R contains only one element, R is said to be a one-rule rewriting system. A single step reduction relation \rightarrow^* induced by R is the following relation on Σ^*: For any $x, y \in \Sigma^*$, $x \rightarrow y$ if and only if there exists $(l, r) \in R$ such that $x = ulv$, $y = urv$, for some $u, v \in \Sigma^*$. \rightarrow^* is the reflexive and transitive closure of \rightarrow.

A rewriting system R is said to be confluent if for any $w, x, y \in \Sigma^*$, $w \rightarrow^* x \text{ and } w \rightarrow^* y$ imply $x \rightarrow^* z$ and $y \rightarrow^* z$ for some $z \in \Sigma^*$. R is terminating (or noetherian) if there is no infinite sequence x_1, x_2, \ldots such that $x_1 \rightarrow x_2 \rightarrow \ldots$. A confluent and terminating rewriting system is said to be complete.

It is not known whether the completeness is decidable for one-rule rewriting systems. Let $R = \{l \rightarrow r\}$ be a one-rule rewriting system. If $r \in \Sigma^*\Sigma^*$ then R is always non-terminating. If $|l| \geq |r|$ and $l \neq r$ then R is always terminating.

Result 1 [3] It is decidable whether or not a one-rule rewriting system is confluent.

Result 2 [2] For a confluent one-rule rewriting system $R = \{l \rightarrow r\}$ with $|l| < |r|$, we can effectively construct a rewriting system $R' = \{l' \rightarrow r'\}$ such that:

1. $|l'| < |r'|$ and $\text{OVL}(l', l) = \emptyset$.

2. R' is terminating if and only if R is terminating.
Hence the completeness problem for one-rule systems is reduced to the termination problem for one-rule systems \(R = \{ l \rightarrow r \} \) with \(\text{OVL}(l, l) = \emptyset \). It is not difficult to see that if \(\text{OVL}(r, l) = \emptyset \) or \(\text{OVL}(l, r) = \emptyset \) then \(R \) is terminating. In this note, we consider the case where \(\text{OVL}(r, l) = \{ p \} \), a singleton.

For each \(s \in \text{OVL}(l, r) \), we determine \(\bar{s} \in \Sigma^* \) by \(l = \bar{s}s \). The decidability of the terminating problem for such one-rule systems is given as follows.

Theorem 1. Let \(R = \{ l \rightarrow r \} \) be a one-rule rewriting system such that \(\text{OVL}(l, l) = \emptyset \) and \(\text{OVL}(r, l) = \{ p \} \). Let \(l = px \), \(r = y\tilde{s}_k \ldots \tilde{s}_1 p \), where \(s_1, ..., s_k \in \text{OVL}(l, r) \) and \(y \in \Sigma^* \) for any \(s \in \text{OVL}(l, r) \).

1. If there is a reduction of length \(|r| \leq 2|l|^2 \) starting with \((y\tilde{s}_k \ldots \tilde{s}_1)^3 \) then \(R \) is non-terminating.

2. Assume that the maximal length of reductions starting with \((y\tilde{s}_k \ldots \tilde{s}_1)^3 \) is \(N \) with \(N < |r|^2 \). If \(|x| > |l| \) and there is a reduction of length \(2N + 1 \) starting with \((y\tilde{s}_k \ldots \tilde{s}_1)^4 \) then \(R \) is non-terminating, otherwise, \(R \) is terminating.

The exact characterization of non-terminating one-rule systems is given as follows.

Theorem 2. Let \(R = \{ l \rightarrow r \} \) be a one-rule rewriting system such that \(\text{OVL}(l, l) = \emptyset \) and \(\text{OVL}(r, l) = \{ p \} \). Then \(R \) is non-terminating if and only if one of the following conditions is satisfied.

\((k, m, n) \) are positive integers. \(x, y, z, w \in \Sigma^+ \) and \(u, v \in \Sigma^* \).

1. \(l \in \Sigma^* \cdot \Sigma^* \).
2. \(r = s_k u \tilde{s}_k \ldots \tilde{s}_1 p \), \(s_1, ..., s_k \in \text{OVL}(l, r) \cap (xu)^*x \).
3. \(l = p(xu)^n \), \(r = (xu)^{n+m} \tilde{s}_k \ldots \tilde{s}_1 p \), \(s_1, ..., s_k \in \text{OVL}(l, r) \cap (xu)^*x \).
4. \(l = p(xu)^n \), \(r = (xu)^{n+m} \tilde{s}_k \ldots \tilde{s}_1 p \), \(s_1, ..., s_k \in \text{OVL}(l, r) \).

\(s_1, ..., s_{j-1} \in (xu)^*x \), \(s_j \in (xu)^i x \), \(1 \leq j \leq k \), \(1 \leq i \leq 2m \).

5. \(l = p(xu)^n \), \(r = y(xyz)^m \tilde{s}_k \ldots \tilde{s}_1 p \), \(s_1, ..., s_k \in \text{OVL}(l, r) \), \(s_1 = y(xyz)^m \), \(xyz = wxy \).

6. \(l = xy((xz^{mk}y)^{m-1}z^{y})^{n+1} \), \(r = y((xz^{mk}y)^{m-1}z^{y})^{n+1}z^{x}x^{y}z^{x} \).

7. \(l = zxyx(z^{2m+n} + 1)xyxv)^{m}x \), \(p = zxyxv, r = zxyx(z^{2m+n} + 1)xyxv)^{m}xux^{2m+n}p. \)

8. \(l = p u((p u)^{k} z)^{2m+n} p u((p u)^{k} z)^{2m+n} p)^{m-1}x \), \(p = zxyx, r = zxyx(p u)^{k} z)^{2m+n} p u((p u)^{k} z)^{2m+n} p)^{m-1}x \).

9. \(l = zy(x^{k-1}y^{m+n+1}x(y x)^{k-1}m)xy, r = x(y x)^{k-1}(y^{m+n+1}x(y x)^{k-1}m)xyz^{m+n+1}x(y x)^{k-1}m. \)
References

1 Tenri University
2 Kyoto Sangyo University
3 Toho University