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Abstract: The aim of this paper is to give an overview of a basic algebraic tool intensively used in describing
the notational semantics of recursive programs. Specifically we’ll present some elements on complete partial
orders, continuous functions and fixpoints. Finally we’ll give an example covering all necessary steps in
proving the correctness of the computation by a recursive program. Our approch follows a classical line and the
reader can find further details in {1], [2] and [3].

1 Preliminaries

In accordance with [3] a partial order set (poset) is a pair M =(4;<) in which a binary

relation < on the set A is reflexive, antisymmetric and transitive. There are countless

examples of posets. Some of the simplest are:

EXAMPLE 1.1  Let P(A) be the set of all subsets of a given set A (including the empty
set & and Aitself) and X < ¥ mean Xis a subset of ¥ . Then (P(4),; <) is a poset.

EXAMPLE 1.2  Let Z" be the set of positive integers and #|m mean n divides m.

Then (Z7;|) is a poset.

EXAMPLE 1.3  Let A be a nonempty set and @ be an element that does not belong
to A.Definearelation <on A, =AU {w} by
a<b ifandonlyif a=wora=>b

then (A, ;<) isaposet and is called the flat poset pertaining to A .



Let S be a subset of 4. An element L €§ is the least element of S if L <aforallaeS.

The element a’ € 4 is an upper bound of §, if a <a’foralla €§. The least upper bound

of §, denoted by lub S or supS, is the least element of all upper bounds of S .

The subset S is called a chainin 4 if a<a’ora’<a forany a,a’ €8§.

A relation f < A x B with the propérty
if (a,b),(ab,)ef = b =b, forany ae 4, b,,b, €B
is called a partial function from 4 to B. If dom( f )= A then f is a (total) function.

By using the composition of functions the nth iterate /" of f:A4 — A is defined by

™ =fo f" with £° =7, (identity function).

Let M=(A;<,) and M'=(B;<;) be two posets. If the function f: 4 —> B has the
property (Va,,a, e A)(a, <, a, = f(a,)<, f(a,)) then f is a monotonic function
(homomorphism). The function / preserves the order in A" .

If f:Ax..xA, — B be a function then any function f: A4, x..x A —> B, with
fw [Alx,‘.xA" = f

is called @ — extension of f.

2 Complete Partial Orders

DEFINITION 2.1 A partial order M = (4;<) is a complete partial order (cpo) if the

two conditions hold:
(1) The set M =(A;<) has aleast element L ,, .

(2) For every chain K in M the least upper bound sup K exists.

EXAMPLE 2.1  Every poset with a least element and only finite chains is a cpo.

So flat posets are cpo’s.



EXAMPLE 2.2  The set of the natural numbers with the common relation is a poset but

not complete. The chain N' has no supremum.

EXAMPLE 2.3  Let 4 and B are two sets and (A +> B) the set of all partial functions
from 4 to B . With the relation
f<g & dom(f)cdom(g) f(x)=g(x)Nx edom(f)
((A— B);<) is a cpo.
This fact is easy to be shown: The empty set & is the least element of (A > B).

IfK= { f,.|i el } is a chain of partial functions then the function f: A+ B
with dom( f ) =U,,dom(f;) and f(x)= f,(x) for all x edom( f) where x edom( f,)

is the supremum of X : f =supK.

EXAMPLE 24  (P(A), <) with the inclusion relation is a cpo.

More generally the following Theorem holds:

THEOREM 2.1 Let M, =(4,,<), i=1,..,n, be cpo’s. With the relation < on

A,x..xA, defined by
(fnf,)5(8-8,)=f < g, Vi=1,..n

the cartesian product M, x...x M of this sets
(A,x.xA4,;<)

is a cpo.
This theorem can also be extended to infinite cartesian products.
As a consequense the cartesian product of a flat cpo with itself is a cpo.

EXAMPLE 2.5 Theset (N, x..xN, ;<) isacpo.



In order to show that the set of all functions equiped with a suitable relation built

a cpo we need this technical lemma:

LEMMA 2.1 LetAbeasetand (B;<) aposet.
On the set (4 — B) of all total functions from 4 to B we define a relation <’ by
f<'g o f(a)<gla) Vaei.
Then, the supremum sup S of a subset S < (4 — B) exists if and only if the supremum
ofthe sets S(a)={f(a)|f €S} exists for every a € 4. If the function sup § exists, then
(supS)(a)=supS(a) forevery ac 4.

Proof Suppose the supremum sup S exists and a € 4. We show that (sup S )(a) is the least
upper bound of S(a). Indeed, f<'supS for any function f €S, that is
f(x)<(supS)(x),Vx € A. Hence f(a)<(supS)(a) and so (supS)(a) is an upper bound
of S(a).
Let b be another upper bound of S(a), thatis f(a)<b,Vf €S, and let the function g
defined by
(supS)(x), x #a

g(x)= { box=a -
Then f <' g forevery f €S. Since sup S is the least upper bound of S we have sup S <’ g
and so (supS)(a)< g(a)=5.
Analogous it can be shown that if sup S(a) exists for arbitrary a € A then the function sup §

exists and (supS)(a)=supS(a) forallaec 4. O

EXAMPLE 2.6 Let K= {f,|i >0} be a set of functions f;:N, — N, defined by

@, ifn=worneN,nzi
nlif neNO<n<i-1

fi(n)={



By using the relation of Lemma 2.1 (4 = B = N, ) we obtain the supremum of the chain X

w, ifn=w
nl ifneN

(supK)(n)=supK(n) = {

Now we are able to show the completeness of the total functions with respect to the

above relation.

THEOREM 2.2 Let 4 be a set and (B;<) a cpo.

Then the set ((A—> B ),<') is a cpo (with the relation <’ of Lemma 2.1).

Proof The function L , 5 4~ B defined by L, ; (a)=1, for all a€A is the

least element of (A— B): Losp(a)=Ly< f(a) for all a €A and everyv function
Sf:A— B. Consider a chain Sc(4— B).

To show that the least upper bound of S exists, it is sufficient by Lemma 2.1 to prove that for
every a € A the set S(a) is a chain ((B;<)is a cpo). | | |
Let b,,b, €S(a) then there are functions f,geS with b = f(a) and b,=g(a) . 1t is
f<'gor g<'f andhence b, <b, or b, <b, and S(a) is a chain. o

EXAMPLE 2.7 Theset ((N, — N, ),<') isacpo (see Example 2.1 with 4= N).

We have seen that the property ‘completeness” can carry over from (B, <) to the set

((A— B);<’). This is not necessarily the case for a subset of a cpo: the subset does not

necessarily have a least element and the supremum of every chain don’t must lie in the subset.

So the following definition is justified.



DEFINITION 2.2 Let M =(A4;<) be a cpo and BC A. Then M'=(B;<;) is called a

sub-cpo of M, if
(1) the poset M’ isacpo and
(2) sup,. K =sup,, K for all chains K'in M".

We mention that the second condition does not necessarily follow from the first. To

demonstrate this we consider the c¢po M=(P(N);,c) and the set
X ={CCc N,C finite} U {S,N} < P(N) . 1t is easy to see that the subset M'=(X;c,) is

a cpo, but the chain

K = {{0}3,{0,23,{02,4},...}

has in M the supremum sup,, K = {02,4,...} andin M’ the supremum sup,,. K=N.

The second condition is not meet and A’ isn't a sub-cpo of M.

THEOREM 2.3 Let M= (A;<) beacpoand B a subset of 4. Then M’ = (B,'.<_|B) isa

sub-cpo of M, if and only if the two conditions hold:
(1) M’ has aleast element,
(2) sup,, K liesin M’ for every chainKin M"’.

Proof Suppose M’ is a sub-cpo of M. Then M’ is a cpo and has a least element.
If K is a chain in M’ then sup,, K = sup,, K . This shows us that sup,, K lies in B and

sup,, K too.
Conversely, the conditions (1) and (2) leeds us to the fact that M" is a cpo. Moreover from ‘

(2) we have sup,, K = sup,, K, since otherwise the supremum in M’ woudn't be unique. [l

EXAMPLE 2.8  Let (4;<,) be a poset, (B;<,) a cpo and (A——>B) the set of all
monotonic functions from 4 to B. Then M’ =((A—— B);<') with the above relation is a

sub-cpo of the cpo M =((A—> B);<’').



3 Continuous Functions

To establish the existence of fixpoints we need continuous functions.
Similar to the case in analysis a function is continuous if it is compatible with the construction

of least upper bounds.

DEFINITION 3.1 Let M =(A4;<,) and M'=(B;<;) be cpo’s. A function f:4—> B is
said to be continuous if for every chain K in M the supremum sup,,. f(K) of the set f(K)
exists and f(sup,, K) = SUP 0 f(K) .

We remark that the ‘completeness’ of M and M’ don’t ensures the existence of the supremum
of the set f{K) because we don’t know if f{K) is a chain. The formulation * the supremum

sup,, f(K) ofthe set f(K) exists’ is necessarily.

The set of all continuous functions from M =(4;<,) to M'=(B;<,) will be denoted

' —4

by [M > M'] or [A— B] if the partial orders are clear.

The following theorem establishes a helpfull connection between continuity and monotonicity.

THEOREM 3.1 Let M =(A;<,)and M'=(B;<,) becpo'sand f:A—> B bea
function. The function f is continuous if and only if /is monotonic and for every chain K in M
is

f(oup, K) <, sup,,. f(K) .

Proof Let f be continuous. It remains to show the monétonicity of f, since
f(supK) <, sup f(K) follows directly from the continuity of f. |

Let a,a’ € A besuchthat a <, @' . Then K = {a,a'} is a chainin M and sup K exists (M is
complete) with supK =a’. Consider the set f(K)={f(a) f(a')}. The Continiuty of f
establishes the existence of sup f(K) and sup f(K)= f(supK) = f(a'), |



thatis f(a)<, f(a').Hence fis monotonic.

Conversely, suppose that f is monotonic and for every chain K in M is
S (supK) <, sup f(K).

We have to show that for every chain X in M the supremum sup f(K) exists and

sup f(K)<, f(supK). Is K a chain so f(K) too because of the monotonicity of f (with
a,a’ €K we have either f(a)<, f(a') or f(a')<, f(a)). This together with the
completeness of M’ delivers the existence of sup f(K). |

Since a <, supK for evefy a €K, by the monotonicity of f, f(a)<, f(supK) Vaek.
Therefore f(supK) is an upper bound of the chain f(K). Since sup f(K) is the least upper
bound we have sup f(K)<; f(supK). This together with the hypothesis gives the

continuity of f. O

Two important consequenses of this theorem are the following corollaries.

COROLLARY 3.1 Let M=(A;<,)and M'=(B;<,) becpo'sand f:A—> B a

function. If M contains only finite chains then f is continuous if and only if fis monotonic.

Proof By Theorem 3.1 it remains to show that for every finite chain X in M and every
monotonic function ffromAto B : f(supK)<, sup f(K).Let K = {a,,...,a,}, n>1, be
any finite chain in M, then sup K = a,. Then f(a,)<; f(a,)<,..55 f(a,)= f(supK)

for the elements of the chain S (K) because fis monotonic. So fGupK)=f(a,)ef(K)
and hence f(supK)<; sup f(K). Furthermore, we have sup f(K)= f(a,)= f(supK). O

COROLLARY 2.2 Let M, =(4,;<;),i=1,..,n, be flat posets and M'=(B,<,) a

cpo. A monotonic function from M = M x..xM  in M'is continuous.

Proof Any flat poset is complete and the Cartesian product of this cpo’s is a cpo with

only finite chains {1,a} . By the previous corollary we get the assertion. O



The continuity of functions must be proved from case to case. Here is one important result.

THEOREM 3.2 Let M =(A;<,) and M'=(B;<,) be two cpo’s. Then the set
[M — M'] of all continuous functions is a sub-cpo of the set (M — M’) of all

functions from A4 to B (with the partial order from Lemma 2.1).

4 Fixpoints

There are many practical problems where the fixpoint of a function is the solution of this

problem.

DEFINITION 4.1 Let 4 be a set and f a function from 4 into itself. An element x € 4 is
called a fixpoint of £, if f(x)=x.

There are functions with one, several or no fixpoints. For example the function f:R— R,

defined by f(x)=ax+b, has the unique fixpoint x, = ]L , where a#1. For a=1 and
—-a ’ .

b #0 the function has no fixpoints.

So the question arise: How we can ‘see” if a function has a fixpoint ? To realise some
properties we consider the following lemma.

LEMMA 4.1 Let A be a set and (P(A);c) be the poset of all subsets of 4. Then ariy
monotonic function f:P(A)— P(A) has a fixpointin P(A). '

Proof Let C={BeP(A)|Bc f(B)}.Cisnonempty since @eC.Let X=UC.
We will show that X is a fixpoint of . For any B eC is f( B)gf( X ) by monotonicity of f
(BcUC = X). With the definition of the set C we have Bc f(B)c f(X), VB and
therefore U{B|B €C}c f(X), thatis UC=X C f(X). Hence X C f(X ).

By monotonicity of f, f(X)c f(f(X)), thatis f(X)eC and then f(X)gUCz'X.
Finally f(X)=X. ' U
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We have seen, from Example 2.4, the set (P(A4);<) is a cpo.

Furthermore the function f is continuous: Let K = {A4,|i €I} be a chain in (P(4);c). By
monotonicity of f, f(K) is a chain too. U, 4, and U, f(4;) are the least upper bounds of
K and f(K), respectively. With the rules of De Morgan, f (U, 4,)=U, f(4;), hence f is
continuous. |

It can be shown that a continuous function from a cpo into itself has fixpoints and the least
fixpoint is unique.

This lemma has a technical character.

LEMMA 42 Let M =(A;<) beaposetand f:M — M a monotonic function.
If M has a least element L then

L (L) f (L),

is a chain.

Proof By induction it will be shown that for all n>0, f"(L)< f™'(L) .

Inthecase n=0 itis L < f(1), since L is the least element of the poset M .

Suppose f"(L)< f™!(L), then by the monotonicity of f, we have f™/(1)< f™*(L)

and the induction step is done. O

Now we obtain the Fixpoint Theorem:

THEOREM 4.1 A continuous function f from a cpo M into itself has a unique least
fixpoint. Furthermore, if 1 is the least element of M then the least fixpoint of f is the

supremum of the chain L, f(L),...,f"(L),... .

Proof  Let a be the supremum of the chain X = {f'(L)|i € N} ( this element exists since

M is a cpo). It will be shown that a is the least fixpoint of f. By the continuity of f we have
f(a)=f(supK)=sup f(K)=supK =a. Thus, a is a fixpoint of f . Let b be another

fixpoint of . Then L <5 and by induction one obtains f"(L1)<b,Vn=0. Hence b is a
supremum of the chain K and sup K <b, thatis a<b. 0

THEOREM 4.2 Let M =(A4;<) be acpo. The function u:/M — M ] — M, defined by
u( f) is the least fixpoint of the continuous function f: M —> M, is continuous.
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COROLLARY 4.1 Let M =(A4;<) beacpoand f:M — M be a continuous function.
If 3xe€A, f(x)<x then y(f)<x.

Proof By induction over i € N it will be shown that f'(L) < x with f(x)<x.

The induction basis L < x,Vx € 4 is clear. Assume f'(1)<x, i 20 then by monotonicity
of f f*(L)<f(x). Thus, f*'(L)<x. So x is an upper bound of the chain
Lf(L)....f"(L),... and hence g f)< x by Theorem 2.6. O

This Corollary is said to be the Park’s Theorem.

The construction of the least fixpoint u( f) as the least upper bound of a chain suggest to the
so-called Induction Principle of Scott. In fact, that fixpoint induction principle is nothing more
than usual induction on n to show a property for the chain K={f"(1)[n=20} and its
supremum 4( f ). On reaching this a special class of predicates will be introduced.

DEFINITION 4.2 Let M =(A4,<) be a cpo and P: A4 — {0,1} be a predicate. P is called
admissible if for every chain K in M the condition holds: P(a),Va e K = P(supK).

Now the Induction Principle of Scott can be formulated.

THEOREM 4.3 Let M =(A4;<) be a cpo, f:M —> M be a continuous function and
P:M — {0,1} an admissible predicate. If P(l) and P(x) implies P(f(x)) for every
xeM,then P(u(f)).

Proof By the Theorem 4.1, K: L, f(L),...,f"(L),... is a chain and y(f)=supK. By
classical induction on n one can show that P(f"(1)),Vn . Since P is an admmissible predicate
the Theorem is proved. O
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S Application

One important application of the Fixpoint Theorem consists in the proof of the correctness of

the computation by recursive programs.

Consider the recursive program for computing factorials:
F(x)«<if x=0then lelsex*F(x—-1) .

The computation starts by a call to the function procedure of the function variable F and the
program is recalled by itself. Normally the computation sequence will be finished afier finite
steps and will provide the output value of the program for the given input value x (meaning or
semantics of the program).

In fact, this recursive program defines a function fac: N — N with

Jac(n)=n*(n-1)*..*2*, neN.

By interpreting ‘<=" as an equality sign the meaning of this program is defined as a function
f:N, —> N, such that

f(x)=if —then—else(x=01,x* f(x-1)) forall xeN,.

This functions are the fixpoints of the functional #:(N, > N,)—> (N, > N, )
defined by '
. CD(f)(x)=if —then—else(x=01,x* f(x-1)) .

By applying the functional @ to the function f: N, — N, we obtain

w,ifn=w
1,ifn=0
o,ifnz0andf(n-P=w
n* f(n-1), othewise

O(f)(n) =

It can be shown ([1]) that a functional @ is associated to every recursive program that is the
least fixpoint of @ exists and has the semantics of the program.
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We show that this functional @ is continuous: It is enough to show, by Theorem 3.1, that
(i) @ is monotonic and
(i) P(sup K) <' supD(K) for every chainKinM =((N, - N, );<’).

For (i) consider f,g:N, — N, with f <’ g (with the relation in Lemma 2.1). According to
the definition of @ we have to distinguish the three cases:

(D n=w: &(f)(n)=w<d(g)(n)

(@) n=0: O(f)(n)=1=D(g)(n)

B) nzw0: iff(n-1)=wthen O(f)(n)=w < D(g)(n)
#f(n=1)#w then &(f)(n)=n*f(n-1)=n*g(n-1)=d(g)(n),
since f(n-1)=g(n-1).

It follows @(f )<’ @(g) and & is monotonic.

To show (ii) let K = {f,|i € N} be a chain in M . Because of Lemma 2.1 we have to prove
that
Dsup K )(n) < (sup O(K ))(n) = sup(D(K )(n)) = sup{®( f, )(n)| f, €K}, Vn N,

We have to distinguish the three cases:

() n=w: O6upK)(n)=w < sup(O(K)(n))

2) n=0: O(supK)(n)=1=sup(D(K)(n))

B)n#w0: iff(n-1)=ow forall f, eK then supK(n-)=w ,
hence @(supK )(n) = w < sup(®(K)(n))
iff(n—-1)=m= o for at least one f;, €K then
supK(n-1)=sup{f,(n-1)|f, eK}=m and so it is

D(supK)(n)=n*(supK)(n—-1)=n*m=sup(O(K)(n)).

Hence @(sup K )(n) < sup(D(K)(n)), VneN, or O(supK)<' sup®(K) for all K.

By the Fixpoint Theorem the functional @ has a least fixpoint x(®) and it is
H(P)=sup{®@'(Ly )i eN}.
By induction on i we can show that

o, ifn=w orneN,i>i

a = f(n)= forallieN .
?( (N"’_’N'”))(n) Ji(n) {n.’, ifneNO<n<i-1 oratie
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Since by Example 2.6

' | o, if n=w
sup{f,(n)li e N} = nl ifneN

the fixpoint (@) is the @ -extension of the factorial function fac.

Finally the correctness of the computing by the given recursive program is proved.
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