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Mellin-Barnes’ type integrals and power series with the

Riemann zeta-function in the coeflicients*

Masanori KATSURADA! (#H EB# - BEREXZHZH)

1 Introduction

The main aim of this article is to investigate the following two types of power series
whose coefficients involve the Riemann zeta-function ((s). The first object is a binomial
type series (2.1) given below, which will be studied in‘the next section, while the
asyniptotic behaviour of an exponential type series (3.2) will be investigated in Sections
3 and 4. Mellin-Barnes’ type integral formula such as (2.2) and (3.3) will play central
roles in both of these investigations. Furthermore, as for generalizations of these power
series, we shall introduce hypergeometric fype generating functions of {(s) and derive
their basic properties in the final section.

It should be noted that Mellin-Barnes’ type integral formulae have been applied
to deduce full asyrﬁptotic expansions for the mean squares of Dirichlet L-functions
and Lerch zeta-functions (see [Kal] and [Ka2]). The main method of the following
derivation is based on a certain path shifting argument, which is similar to [Kal][Ka2],
for Mellin-Barnes’ type integral formulae. Most of the results in this article, together

with outline of proofs, have been announced in [Ka3].

*This article is in preperation for submitting some mathematical journal.
tResearch partially supported by Grant-in-Aid for Scientific Research (No. 07740035), Ministry of

Education, Science, Sports and Culture, Japan.
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2 Binomial type series
Lét c;z >0 l;e épararneter; and ¢(s;a) the Hurwitz zetatfuncfioﬁ defined by
¢(s, a) z(n+a) " (Res>1),
n=0
and its meromorphic continuation over the whole s-plane. Let I'(s) be the gamma;
function, and (s), = I'(s + n)/T(s) for any integer n Pochhammer’s symbol.

A simple relation

Y {¢n) -1} =1,

n=2

which was firstly mentioned by Christian Goldba.ch in 1729 (see [Sr2, Section 1)), follows
immediately from the inversion of the order of the double sum ¥ 32, >%_, m™™". This

is in fact derived as a special case qf S. Ramanujan’s formula
(V)n n ‘ '
((m1+z)= Z (v +n)(=2) (2.1)

for |z| < 1 and any complex v ¢ { 1,0,1,2,...}, which gives a bé..c;e of his various
evaluations of sums involving ((s) (see [Ram, Sections 5 and 6]). Noting the relations
¢(s,1) = ¢(s) and (8/0a){(s, ) = (—1)"(s)al(s + n,a), we see that the right-hand
side of (2.1) is actually the Taylor series expansion of ((v,1+z) as a function of z near
¢ = 0. H. M. Srivastava [Sr1][Sr2][St3] derived vaxious‘summation formulae related
to (2.1), while D. Klusch [Kl] considerd a generalization of (2.1) to the Lerch zeta-
function. This direction has been further pursured by M. Yoshimoto, S. Kanemitsu
and the author [YKK]. V. V. Rane [Ran] recently applied (2.1) to study the mean
square of Dirichlet L-functions. For related results and va.nous generahzatlons of (2 1),
we refer to [K1][Sr3] and their references.

For our later purpose we shall prove (2.1) as an application of Mellin-Barnes’ type
integrals. Suppose first that Rev > 1, and set

for z > 0, where b is a constant fixed with 1—Rev < b < 0, and (b) denotes the vertical
straight line from b — 700 to b + i0co. We can shift the path of integration in (2.2) to



the right, provided 0 < z < 1, since the order of the integrand is O{z"*3(|Ims| +
1)Rev—1e=*lImsl} on the vertical line Res = N + 7 (N = 0,1,2,...). Collecting the
residues at the poles s = n (n = 0,1,2,...), we see that F,(z) is equal to the right-
hand infinite series in (2.1). On the other hand, since {(v + s) = T3>, n™"* converges
absolutely on the path Res = b, the term-by-term integration is permissible on the

right-hand side of (2.2). Each term in the resulting expression can be evaluated by

- _ 1 I‘(—s)l‘(u + 8) —v—4 .8 |
(n+2)™ = 5 /(b) () n" " '2'ds.
This can be obtained by taking —z = z/n in -
-a __ i _ AY
D(a)(1-2)"" = 5 /Mr( 8)T(a + s)(—z2)"ds

for | arg(—z)| < 7 and — Rea < o < 0, which is a special case of Mellin-Barnes’ integral
formula for Gauss’ hypergéometric function (cf. [WW, p.289, 14.51, Corollary]). We

therefore obtain

(-] oo

F(z)= 3 (n+2)" =3 (n+1+2)" =((»1+2),

n=1 n=0

from which (2.1) immediately follows by analytic continuation.

3 Exponential type series

In 1962, S. Chowla and D. Hawkins [CH] found that the sum

Go(e) = 3 ¢

n=2

has the asymptotic formula
' 1 —-AVT
Go(z) = zlogz + (2y — 1)z + g7t O(e ) (3.1)

as ¢ — +00, where v is Euler’s constant and A is a certain positive constant. They
conjectured that the error estimate in (3.1) cannot be essentially sharpened. Let a be
an arbitrary fixed real number. R. G. Buschman and H. M. Srivastava [BS] introduced

a more general formulation

)= ¥ (n-a2L,

n>a+l
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where n runs through all nonnegative integers with n > a+1, and studied its asymptotic
behaviour as # — +oo. The special cases a = —2,—1 and 1 hve been investigated
by D. P. Verma [Ve], J. Tennenbaum [Te], and D. P. Verma and S. N. Prasad [VP],
respectively.

Let v be an arbitrary fixed complex number. It is in fact possible to treat a slightly

general sum

G = ¥ n-nL, (32)
n>Rev+1 n.
based on the formula ‘

G,(z) = L /(;) I‘(—s)((s —v)z'ds (3.3)

2mi
for z > 0, where c is a constant fixed with Rev+1 < ¢ < [Rev]+2. Here [Re ] denotes
the greatest integer not exceeding Re v. (3.3) can be proved by shifting the path (c) to
the right, and collecting the residues at the poles s = n (n=[Rev]+2,[Rev]+3,...) of
the integrand, since the order of the integrand is O{z¥+3(N!)~e~ ™} on the vertical
line Res = N + } (N = [Rev] + 1,[Rev] + 2,...). While the main method of [BS] is
Euler-Maclaurin’s summation device, our treatment of (3.2) is due to a refinement of
original [CH].
In the next section we shall first give a proof of

Theorem 1. The following formulae hold for all z > 1.

() If v ¢ {-1,0,1,2,...},

[Rev]+1 (—z)
Gy(z) = I(—v — 1)z"*' - 20 {n—v)*—=+G.(=); (3.4)

(i) If v € {-1,0,1,2,...},

Gufe) == (toga 4 2 - 5 H-dn-n 0w 63

(v+ 1) = = n!
where the empty sum is to be considered as zero. Here G,(z) is the error term satisfying

the estimate
G.(z) = O(z~%) (3.6)

for any C > 0, where the implied constant depends only on C and v.



Remark. . This theorem refines the results in [BS].

S. Chowla and D. Hawkins suggested in [CH] that the error term in (3.1) is express-
ible in terms of ’almost’ Bessel functions; however, it seems that the functions have not
been precisely deternxjned. Let K,(z) be the modified Bessel function of the third kind
defined by - |

o {-(2) - L(2)},

where

I (z) Z 1 ( )2m+v

ymii(m+v+1)
is the Bessel function with purely imaginary argument (cf. [Er2, p.5, 7.2.2(12) and
(13)]). We can indeed show that G,(z) has the Voronoi type summation formula (cf.
[Iv, Chapter 3]) involving K, 1(2).

Theorem 2. For any z > 1 we have

2w
e TR, (26 \/2n1rz)}

z \ Fv+1) = _i(;+1) —Si41) ' . :
G(z) = 2(—) no3 {e 4 K,41(2¢7V2n7z)
n=1

Let (v,m) = I'(3 + v + m)/m!T(; + v — m) for any integer m > 0 be Hankel’s

symbol. Applying the asymptotic expansion

o= (2)

for | arg z| < 37/2, |z| > 1 and any integer M > 0 (cf. [Er2, p.24, 7.4.1(4)]), to Theorem

Wi

X 64 tmien) ™+ o) (37)

m=0

2, we can further prove

Corollary. The asymptotic formula

G.(z) = vz (i)

(s
.

v+
e—Z\/‘rz
2

{E (v+1 ,m)(327z)”7 cos (2\/ﬁ+ (" + - + m)) +0(” * }

2
m=0
holds for all ¢ > 1 and all integers M > 0, where the implied constant depends only on

V.
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-Remark. This corollary gives an affirmative answer to the conjecture of S. Chowla

and D. Hawkins mentioned above.

4 Proof of Theorems 1, 2 and Corollary

In this section we shall prove Theorems 1, 2 and Corollary.

Proof of Theorem 1. We may restrict our consideration to the case v ¢ {-1,0,1,...},
since other cases can be treated by taking limits in (3.4). Let C be a constant fixed
arbitrary with —C < min(0, Re v +1). Then we can shift the path of integration in (3.3)
from (c) to (—C), since the order of the integrand is O(| Im s|%e~71™l) as Im s — +o0,
where B > 0 is a constant depending only on Ré s and Rev. Collgcting the residues at
the poles s =7n (n=0,1,...,[Rev] + 1) and » 41, we obtain (3.4) with

g,(t):«z—lﬁ /(_C)r(—s)c(a-u)z'ds. (a1

The estimate (3.6) immediately follows by hoting that |Jz‘|‘ = 2= holds on the path
Re s = —C. This completes the proof of Theorem 1. O

Proof of Theorem 2. Here we fix C such as —C' < min(0, Rev). Substituting the
functional equation {(s —v) = x(s — v){(1 — s + v) (cf. [Iv, Chapter 1, p.9, 1.2(1.24)])
into the right-hand side of (4.1), we get

6(e) = S [ T s4vzeos (Jo-v-1)
x((1-s+ 1/)(21rz)'_"A__1ds. (4.2)

Since ((1 — s +v) = X2, n*™ ! converges absolutely on the path Res = —C, the
term-by-term integration is permissible on the right-hand side of (4.2), and this gives

G, (z) ="t i {g,,(2n1r:ce'7i) + g,,(2n7fwe'zﬂi)},

n=1
where
1

g,,(z) - 2m

/(_C) I(=8)I(1 — s +v)2"'ds O (43)

for |argz| < 7. Noting that the pair

2K, (z),  2"T(Ls)T(Ls +v)
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for Re s > max(0, —2v) is Mellin transforms (see [T, Chapter VII, p.197, (7.9.11)]), we
immediately obtain

g9v(2) = 227 DK, +1(22’)

for | arg z| < w, by which the proof of Theorem 2 is complete. O
Proof of Corollary. From (3.7) with M = 0, we have

K, 41(26* % V2n7z) = O{(ne) ™+ exp(—2v/n7z)} (4.4)

forn=1,2,...and z > 1. Noting that the inequality v/n > V2 (1 +5Y/n— 2) holds
for all n > 2, we obtain -

-%("“)(nz)‘i‘ exp(—2y/n7z) = O{z~ % exp(—2v2mz)}.

n>32
This, together with Theorem 2 and (4.4), yield

F+1) xi =i xi =i
Gu(z) = 2 (2 ) * { VK, L1(2¢7 V2me) +eT(”+l)K,+1(2e‘T\/27ra:)}
+ O{z¥Rer*1 exp(—2v27z)}, | (4.5)

where the implied constant depends only on v. The corollary now follows by substituting
(3.7) into the first term on the right-hand side of (4.5). O

5 Generating functions of ((s)

Let a and v be arbitrary complex numbers with v ¢ {1,0,—1,...}. We define
a n
fi(ogz) = E( ) C(v+n)z™ (2] <1),
n=0 n!

e(d) = 3 v+ (o] < +oo).

n—O
Since ((v +n) — 1 uniformly for n = 0,1,2,..., as Rev — +00, we see that f,(a;z) —
(1—z)~* and ¢,(z) — €*, as Rev — +00. This suggests us to define the hypergeometric

type generating functions of {(s) as

Fe,fimiz) = zo (?‘)')‘ff’)"«wn)z" (12 < 1), (5.1)
Flariz) = 38R oty (2] < +oo), (5.2)

n=0 ( )'l
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where o, 8 and 7 are arbitrary fixed complex numbers with v ¢ {0,—1,-2,.. .}. Then

we can observe, when Re v — +o0, that
Fuola,Bi1i2) — F(e,Bs752),
Fulairiz) — Flogv;2),

where F(c, 8;7v;z) and F(c;7; z) denote hypergeometﬁc functions of Gauss and Kum-
mer, respectively. »
Substituting the series representation {(v + n) = ¥2_, m™"" for Rev > 1 and

n > 0 into (5.1) and (5.2), and changing the order of summations, respectivelj, we get

Theorem 3. The Dirichlet series expressions

-3 Z .,
Fula,Biv;2) = 'EIF (a,ﬂ;v; ;n-) m™, (5.3)

and .
Folosv;2) = 'El F (a;'r; %) m™ - (59)

hold for Rev > 1, respectively.

Recall that the hypergeometric functions have Euler’s integral formulae (cf. [Erl,
p-59, 2.1.3, (10), and p.255, 6.5, (1)]). Corresponding to these, from the term-by-term

integrations, we can deduce

Theorem 4. It follows that

I'(v)
T(B)T(y - B)

for 0 <RefB < Rewy and |z| < 1, and

()
N(a)T(y — ) Jo

for 0 < Rea < Rewy and |z| < +o0.

Fole, Biv;2) = /0 1 71— )P (o T2)dr (5.5)

1
f,(a;'y;z) = 711 = 7)o te, (12)dr (5.6)

Recall further that the hypergeometric functions have Mellin-Barnes’ integral for-
mula (cf. [Erl, p.62, 2.1.3, (15), and p.256, 6.5, (4)]). By the same path shifting

argument as in Section 2, we can show



Theorem 5. For Reoa > 0, Re3 > 0 and Rev > 1 we have

1 1) [ Neto)l(B+9)r(=s)
271 I‘(a)I‘(,B) (®) I'(y+s)

FoleyBiv;2) = ((v + s)(—=2)'ds, (5.7)

for | arg(—z)| < 7, where b is fized with max(— Rea,—Ref,1 —Re v)<b<0, and

1) f Datal(=s)
2mil(a) J(oy . T(y+3)

Fologvy;z) = (v + s)(—2)ds (5.8)

for | arg(—z)| < 7/2, where c is fized with max(—Rea,1 —Rev) < c<0.

Formulae (5.1)~(5.8) are fundamental in deriving various properties of F,(e,B;; 2)
and F,(a;v; z). Further investigations and detailed proofs will be given in forthcoming

papers.
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