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The Girth of a Thin Distance-Regular Graph
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Abstract. Let I be a distance-regular graph of diameter d>3. For each vertex x of T, let T(x)
denote the Terwilliger algebra for I" with respect to x. An irreducible T(x)-module W is said to be
thin if diimE;*(x)W<1 for O<i<d, where E;*(x) is the ith dual idempotent for I' with respect to x.
The graph I' is thin if for each vertex x of T', every irreducible T(x)-module is thin. A regular
generalized quadrangle is a bipartite distance-regular graph with girth 8 and diameter 4. Our main
results are as follows:
Theorem Let I'=(X,R) be a distance-regular graph with diameter d=3 and valency k=3. Then
the following are equivalent:

(i) I'isaregular generalized quadrangle.

(ii) I'is thin and c3=1.
Corollary Let I'=(X,R) be a thin distance-regular graph with diameter d=3 and valency k=3.
Then I' has girth 3, 4, 6, or 8. The girth of I is 8 exactly when I is a regular generalized

quadrangle.
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Introduction

The purpose of the present paper is to provide an introduction to the results and techniques of [2].
In that paper, we show that if I" is thin (see definition below), then the girth of I' is 3, 4, 6, or. 8.

Moreover, the girth is 8 exactly when I' is a regular generalized quadrangle.

Let I'=(X,R) be a graph with shortest-path distance function 9 and diameter d. For any two
vertices X,y&EX, a walk of length h from x to 'y is a sequence X(,X1,X2,...,Xp (Xi€X, O<i<h) such
that xo=X, Xp=Y, and X; is adjacent to X+ for all i (O<i<h-1). |

A walk in T is said to be closed if it starts and ends at the séme vertex. By a cycle, we mean
a closed walk x¢,X1,X2,...,Xy=X0 of length h>3 such that the vertices X¢,X1,...,Xp-1 are distinct.
The girth g=g(T') is defined to be

g=min{h | there is a cycle of lengthh in I'}.

Let '=(X,R) be a graph with diameter d. We say I' is regular with valency k if each vertex
in T has exactly k neighbors. We say I' is distance-regular whenever for all triples h,i,j
(O<h,i,j<d), and for all x,yEX with d(x,y) = h, the number |
pg - {zEX | d(x,2)=i, (y,z) = j}
is independent of the choice of x and y. The integefs pg are called the intersection numbers of T.
From now on, assume that I' is distance-regular. For convenience, sei a; = pil (O<i<d),

b; = pg +11 (0<i<d-1), b0, ¢; = pi_l 1 (1<i<d), and co=0. Note that I" is regular with valency
k=bgy. Moreover, .
k=aj+b; + ¢ (O<i<d). (1)

I; can be shown [1, p. 126—127_]‘ thatr b(),bl,...,b(H and C1,€2,---,Cd determine
{pg | O<h,i,j<d}. The array | |
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[ * ¢ cp ... cd‘l
* a; ap ... ag
by by by ... *
is known as the intersection 'array of I'.
LetI' = (X,R) be a distanée-regular graph of diameter d. Let Matx(lR) denote the IR-
algebra of matrices with entries in IR and rows and columns indexed by X. For each i (O<i<d), let

Aj=A(T') be the matrix in Matx(IR) with xy entry

N 1 if a(x,y)=i
(A’)xy_{O otherwise (x,y €X).

We call A; the it distance matrix of I.

By matrix multiplication, using the definition of the pg,
d

AA = ; pgAh, (0<i j<d).

Therefore, {Ag,A1,...,Aqd} is a basis for a subalgebra M of Matx(IR). We call M the Bose-Mesner
Algebra of T.
Fix a vertex x€X. For each i (O<i<d), let E;* = E;*(x) be the diagonal matrix in Matx(IR)
* with yy entry ‘_ | '
(Ei")yy = (1) Lﬁfe(rfvfs): L yEx.
We call E;* the i dual idempotent of I with respect to x.
Observe that
E'E* = &;;E", (Os<i j<d).
Therefore, {Eo*,E*,...,Eq"} is a basis for a subalgebra M*=a*(x) of Matx(IR). We call M* the

dual Bose-Mesner Algebra of I with respect to x.

Let I'=(X,R) be a distance-regular gmph. Pick x&X, and write M*=M*(x). Let T = T(x)
denote the subalgebra of Matx(IR) generated by M and M*. We refer to T as the Terwilliger

Algebra of I" with respect to x.
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Let I'=(X,R) be a distance-regular graph of diameter d. Let V = IRX denote the column
space of Matx(IR). Then Matx(IR) acts on V by left multiplication. We refer to V as the standard
module for T'. Fix a vertex x€X, and write T=T(x), and E;*=E;*(x) (O<i<d). By a T-module, we
mean a subspace of the standard module V which is invariant under multiplication by elements of
T. A nonzero T-module W is said to be irreducible if W properly contains no T-modules other than
0. Anirreducible T-module W is said to be thin if |

dimE*W <1 (O<i<d).
For all x&€X, we say T is thin with respect to x whenever every irreducible T(x)-module is thin.
We say I is thin if T is thin with respect to every vertex x&X.
The Terwilliger Algebra in general, and thin graphs in particular, have been studied

extensively in recent years. See, for example, [3], [4], [5] .
A Combinatorial Interpretation of the Thin Condition

We say that a walk yo,y1,...,yn in I has shape ig,ij,...,ip with respect to x if d(x,yj)=ij for
all j (O<j<h). ’

In Figufe 1, the bubble labeled I'|(x) represents the set of vertices adjacent to x, the bubble
labeled I'x(x) represents the set of vertices distance 2 from x, etc. Thus, the pictured path from y to

z has shape 4,4,3,2,3,3,4 with respect to x.

® L L& LK I(x)

Figure 1
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The following Lemma gives a combinatorial interpretation of the thin condition in terms of
the shape of paths.

Lemma 1 Suppose I'=(X,R) is a distance-regular graph with diameter d=3. Pick x€X, and write
E;i*=E;{*(x) (O<i<d). The following are equivalent:

(i) I is thin with respect to x.

(ii) For any integer i (O<i<d), for any sequence of integers i=ig ij,...,ip=i (O<ij<d, Osj<h),
and for any vertices y,Z at distance i from x, the number of walks from y to z of shape ig,ij,...,ij
with respect to x is equal to the number of walks from z to y of shape iy, ij,...,ij with respect to x.

For our purposes, the important implication is (i)=>(ii). If a distance-regular graph is thin,
then the existence of a path from y to z of a certain shape implies the existence of a path from z to y
of the same shape. For example, assuming the graph in Figure 1 is thin, the existence of the

pictured path implies the existence of the path in Figure 2.

® LK LK LK (%)
o 4.4'
X
Figure 2

We can already see how this Lemma will be used to produce a girth bound. The two paths together
imply the existence of a cycle of length at most 12. Our strategy will be to use various techniques

to produce short, asymmetric paths, which will imply the existence of short cycles.
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A Characterization of the Regular Generalize Quadrangles

By a regular genefalizedquadrangle, we mean a distance—regulér graph with intersection afray:
{ * 1 1 1 k] = :

i* 0 0 0 Oj .
k k-1 k-1 k-1 *
The main result of our paper is the following.
Theorem 2 Let I'=(X,R) be a distance-regular graph with diameter d=3 and valency k=3. Then
the following are equivalent: ;
(i) I'isaregular generalized quadrangle.
(ii) Iis thin and c3=1.
The outline of the proof is as follows:
Step 1: Show the implication (i)=>(ii).
Step 2: Assume (ii), and show that g>6.
Step 3: Show that g is even.
Step 4: Show that g=8.

Step 5: Show that c4=k, which implies that I'is a generalized quadrangle.

Space limitations do not permit us to show the entire proof. However, we will illustrate

some of the important ideas involved by presenting some details of steps 3,4, and 5.
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Step 3: Show that g is even.
Suppose that g=2i+1 for some integer i (i=3). Pick a cycle x,x1,...,X2i+1=X( of minimal
length. Note that since this cycle has ininimal length, d(xq,x;-1)=i-1 and d(xq,X;)=0(X0,Xj+1)=i.

Now, since k=3, x;.] must have a neighbor y that is not part of the cycle. Since the girth is 2i+1,

y
X1 Xi-1
L 4

xi+1

d(x,y)=i. See Figure 3.

X2i Xi+2
Figure 3

Now, the existence of the path y,x;.1,Xj,X;+1 of shape i,i-1,i,i with respect to x implies the
existence of a path from x;, to y with the same shape with respect to x. But the two paths together

form a cycle of length at most 6, a contradiction.

Step 4: Show that g=8.

Suppose that g=2i for some integer i (i=4). Pick a cycle xo,xl,...,x2i¥x0 of minimal
length. Note that since this cycle has minimal length, d(xg,Xj.2)=1-2, d(x0,X{-1)=0(XQ,Xj+1)=i-1,
and a(xo, xj)=i. Now, since k>3, x;.2 must have a neighbor y that is not part of the cycle. Since

the girth is 2i, d(x,y)=i-1. See Figure 4.

X1
o )
X 1- X.
Xi+ 1
*— e

X2i-1 Xi+2
Figure 4
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Now, the existence of the path y.xj_2,X;-1,X;,Xj+] of shape i-1,i-2,i-1,1,1-1 with respect to x
implies the existence of a path from X;+ to y with the same shape with respect to x. The two paths
together form a cycle of length at most 8. Therefore, the girth of T" is 8.

We now know that the intersection array of I is:
* 1 1 1 ?77?

0 O 0 o 2?2 7?2 .5
k k-1 k-1 k-1 72 7 ..

It will therefore be sufficient to establish that c4‘=k. By (1), this will imply that a4=bs=0.

Step 5: Show c4 = k.
Pick a cycle xg,X1,...,Xg=X0. Let y be any neighbor of x4. We wish to show that

d(x0,y)=3. Of course, we may assume that y#x3,xs. Thus, we have the following picture:

Figure 5
Now, look at the shape of the path y,x4,X5,X6,X7 With respect to x;. With respect to x3, this
path has shape 3,2,3,4,3. Therefore, there must be a path from x7 to y with shape 3,2,3,43. The
second vertex in this path is adjacent to x7 and distance 2 from x. Since c3 = 1, the unique vertex
of this description in xo. Therefore, there is a path from xg to y of length 3, and d(xq,y)=3, as

desired.
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This completes the proof of Theorem 2. We have the following immediate Corollary.

Corollary 3 Let I'=(X,R) be a thin distance-regular graph with diameter d>3 and valency k>3.
Then I has girth 3, 4, 6, or 8. The girth of I is 8 exactly when I is a regular generalized
quadrangle.

Proof 1f c3>1, there is a cycle of length 6, so g<6. (The fact that g=5 follows from some of the

details we omitted in Step 1.) If c3=1, then g=8 by Theorem 2.
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