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Nonsymmetric Structure of Spin Models

HREHAK BFHFIE (Kazumasa Nomura)

This is an interim report of a joint work with Francois Jaeger about
nonsymmetric spin models and their link invariants. We mention here

some of our results without their proofs.
1 Introduction

Spin models were introduced by Véughan J onesu [8] to obtaiﬁ invariants of
links and knots.

Definition. A spin model is a pair S = (X, W) of a finite set X, |X| =
n > 0, and a function

W:XxX—C*

such that (for all d, b, c € X)

W(a,z) e
xg{ W =0 if a # b,
1 > W(a,z)W(b,z)  W(a,b)
\/ﬁ zeX W(C7 IB) a W(a'7 C)W(C, b)

The above two conditions are called the type II and type III condition

respectively.
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Remark. The function W can be viewed as an n X n matrix indexed by

X x X.

For each spin model S = (X, W) and for each oriented link diagram L,

there corresponds a complex number Z5, and the correspondence
75 : L+— 273 €C
gives a link invarinat, i.e.
LyxLy= 7} =73,

where L; =~ L; means that two link diagrams L;, Lo represent isotopic

links in 3-space.

Remark. The above definition of a spin model originally due to Vaughan
Jones (for symmetric W). The definition was generalized to the general
case (including nonsymmetric W) by Kawagoe-Munemasa-Watatani [9).
There exist many examples of nonsymmetric spin models. However, for
each known nonsymmetric spin model S, we can find a symmetric spin

model S’ with Z° = Z5'. This leads to the following natural question.

Question. Does there exist a nonsymmetric spin model W whose link

invariant does not come from any symmetric spin model?

Here we study nonsymmetric structure of spin models and give an answer

to the above question.
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2 Main Results

Theorem A. For every spin model S = (X, W), there exists a partition
X=X1U--UXn

with |X;| = .-+ = |Xm| such that for all i, j € {1,...,m} and for all
x e X,y € Xj,
W(z,y) ="' W(y,z)

holds, where n = exp(2m+/—1/m).

Remark. From Theorem A, it is clear that
W(z,y) = W(y,z) <= z,y € X; for some ¢

Hence Xj, ..., Xm are the equivalence classes of the equivalence relation
~ which is defined by = ~ y iff W(z,y) = W(y,z). In particular, m
(The number of classes) is uniquely determined by S. We call m the

(nonsymmetric) index of S. Obviously,
S has index 1 <= W is symmetric.
Theorem B. If a spin model S = (X,W) has odd index, then the link

invariant of S agrees with the link invariant of some symmetric assciation

scheme.

We obtained new nonsymmetric spin models in the case of index 2:
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Theorem C. Let H be a Hadamard matrix of size k > 4, and let A be a
square matrix of size k given by A = (a — 3)I + 3J with complex numbers
a, 3 such that ﬁé +B24+vVk=0a=—-8"3 Let W be a square matrix
of size n = 4k given by

A A nH -nH
A A -nH nH
-n'H n'H A A
n'H -nH A A

W =

where 1) is a primitive 8'®-root of unity. Then

(1) W satisfies type II and type III conditions, so that we have a non-

symmetric spin model S = (X, W) of index 2, where X = {1, ...,n}.

(2) The link invariant of the above spin model S does not agree with the

link invariant of any symmetric spin model.

Thus the answer of the Question in the introduction is YES.

Remark. Jaeger and I are now trying to determine the link invariant of

the above nonsymmetric spin model S.

3 Methods

- In the proof of the results in the previous section, we essentially used the

following results.
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Theorem 1 (Jaeger-Matsumoto-Nomura [7]). Let S = (X, W), | X| =
n, be a spin model. Then there exists a Bose-Mesner algebra N(W) such

that
o We NW),
e N(W) has a duality ¥ : N(W) — N (W) given by

T(A) = _\/%Etw-(tw o(WA), AENW),

where a = W (z,z) (independent of x € X ), Ao B denotes the Hadamard
product: (A o B)(z,y) = A(z,y)B(z,y), and W+ = W, W (z,y) =
(W (y, )"

Remark. See [2, 7] for definitions of Bose-Mesner algebras and their

dualities.

Remark. The above theorem says that évery spin model is obtained ds
a solution of modular invariance equations of some self-dual association
scheme. This fact was proved by Jaeger [6] in the symmetric case (by
topological methods). The algebra N (W) was constructed for each sym-

metric type II matrix W by the author [12].

Remark. It is not so difficult to show that the matrix F = %W“L oW~
becomes an idempbtent ofrank 1in N (W) Hence ¥(FE) is a permutation

matrix contained in N(W). This is one of the key obsevations of the proof

of Theorem A, B, C.
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Remark. Let Ey, Fi, ..., E4 be the primitive idempotents of the Bose-
Mesner algebra N(W). Then 2W+oW~ = E; for some s. Put ¥(E;) = A;,
1 =0,...,d, and let R; be the relation on X with the adjacency matrix A;
(¢=0,...,d). Then the relations Ry, ..., R4 form an association scheme on
X. In the proof of Proposision D below, we repeatedly used the following

Lemma:

Lemma. For every z, y € X,

(z,y) € R <= W(z,2) =W(z,y) forall z€ X

In the proof of Theorem B, we need Bannai-Bannai’s generalization of
spin models: 4-weight spin model defined in [1]. Theorem B is implied by
Theorem 1 and the following result concerning “Gauge transformation” of

4-weight spin models.

Theorem 2 (Jaeger). Let S = (X, W1, Wy, W3, W,) be a 4-weight spin
model. Let P be a permutation matrix on X with PWy, = WL P, let A
be an invertible diagonal matrix and let \ be a non-zero complex number.
Then

(X, MAWLA™Y, XL PW,, ATIAWSATL, AW, EP)

is a 4-weight spin model which gives the same link invariant as S.
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Remark. A slightly weaker version of the above Theorem 2 was ob-
tained independently by Deguchi [3].
Remark. In the ca,sé of odd index, we can find a permutation matrix
A; € N(W) with A? = U(E), where E = 1W* o W~. This is the reason

why Theorem B holds in the case of odd index.

The spin model given in Theorem C is a nonsymmetric variation of the

symmetric Hadamard model:

Theorem 3 (Nomura [12]). Let H, A be matrices of size k defined in

Theorem C. Let W be the square matrix of size n = 4k given by

A A wH —-wH
A A —-wH wH
wH —w'H A A |’
—wH wiH A A

where w* = 1. Put X = {1,...,n}. Then S = (X, W) is a symmetric spin

W =

model.

Remark. For a simpler proof of Theorem 3, see [11]. The link invariant

ZS of the above spin model S was determined by Jaeger [5, 6].
Theorem C is obtained from Theorem 3 and the following fact.

Proposition D.

(1) Let S = (X,W) be a spin model with index 2. Then there is a
partition

X:YIU"UYZ
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with |Y;| = (n/4), and W splits into blocks, corresponding to Y3, ...,

Y4, as follows:
A A B -B
A A —-B B
-B B C C
‘B - B C C

Moreover A, B, C satisfy type II condition, and A, C satisfy type III

W =

condition.

(2) A matrix of the above form defines a spin model if and only if

A A nB -nB
A A -nB nB
nB -n'B C C |’
-n'B ‘B C C

W' =

defines a spin model, where 1 is a primitive 8-root of unity.
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