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Abstract

We give a closed formula for the Fourier coefficients of the elliptic modular function
$j(\tau)$ expressed in terms of singular moduli, $i.e.$ , the values at imaginary quadratic argu-
ments. The formula is a consequence of a theorem of D. Zagier [6] which is intimately
related to a recent result of R. Borcherds [2] on a construction of modular forms as infinite
products.
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1. Introduction

The elliptic modular function $j(\tau)$ , often referred to as the modular invariant, exhibits
many beautiful properties. In particular, each singular modulus, $i.e.$ , the value at each
imaginary quadratic argument (a CM point), is algebraic and generates a certain abelian
extension referred to as the ring class field over the imaginary quadratic field of the argu-
ment. On the other hand, the Fourier coefficients of $j(\tau)$ have a mysterious connection with
the degrees of irreducible representations of the largest sporadic simple group “Monster”;
this surprising connection is known as (a part of) the “moonshine”, which was established
by I. Frenkel-J. Lepowsky-A. Meurman [4] and R. Borcherds [1].

Since CM points are dense in the complex upper half-plane $\mathfrak{H}$ , the domain of definition
of the $j$ -function, the function $j(\tau)$ as an analytic (or even continuous) function is completely
determined by its values at such points. It would therefore not be unreasonable to expect a
formula for the Fourier coefficients of $j(\tau)$ expressed in terms of the singular moduli. The
aim of the present paper is to show that there indeed exists such a formula. A different kind
of exact formula for the Fourier coefficients of $j(\tau)$ has been known since the work of H.
Petersson [5] and H. Rademacher [6]. This formula expresses the coefficients as an infinite
series involving aKloosterman sum and the modified Bessel function of the first kind. It is
said to be an analytical formula, whereas our formula is essentially arithmetical.

Thus the idea of explaining the moonshine via complex multiplication theory might
not be sheer nonsense.
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2. Theorem

The elliptic modular function $j(\tau)$ is invariant under the action of the modular group
$SL_{2}(\mathbb{Z})$ ; in particular, it has a Fourier series expansion:

$j(_{\mathcal{T}})= \frac{1}{q}+744+\sum^{\infty}cnq^{n}n=1$ $(q=e^{2\pi i}r, \tau\in \mathrm{r})$ ,

the first few coefficients being $c_{1}=196884,$ $c_{2}=21493760,$ $C_{3}=864299970,$ $\ldots$ . All the $c_{n}$

are positive integers.

After D. Zagier, we define for each natural number $d>0,$ $d\equiv 0,3$ (mod4), an integer
$J_{1}(d)$ by

$J_{1}(d)= \sum_{\supseteq \mathcal{O}\mathit{0}_{d}}\frac{2}{w_{\mathcal{O}}}\sum_{[\alpha \mathit{0}]}(j(\mathrm{Q}o^{)}-744)$
,

where the first sum runs over all imaginary quadratic orders $\mathcal{O}$ that contain the order
$\mathcal{O}_{d}$ of discriminant $-d,$ $w_{\mathcal{O}}$ is the number of units in $\mathcal{O}$ , and the second sum is over a

representative of the proper $\mathcal{O}$-ideal class. Note that here $j(\tau)$ is viewed in the standard
manner as a function on the equivalence classes of lattices in $\mathbb{C}$ . In addition, we set

$J_{1}(0)=2,$ $J_{1}(-1)=-1$ and $J_{1}(d)=0$ for $d<-1$ or $d\equiv 1,2$ (mod4).

In remark 3) appearing after the following theorem, it is shown that $J_{1}(d)$ is in fact an

integer. Our formula is then given as

Theorem. For any $n\geq 1$ ,

$c_{n}= \frac{1}{n}\{\sum_{r\in \mathbb{Z}}J_{1}(n-r)+\sum_{\Gamma\geq 1,\mathrm{o}\mathrm{d}\mathrm{d}}((-1)n2J1(4n-\Gamma^{2})-J1(16n-r^{2}))\}$ .

Examples.

$c_{1}=2J_{1}(0)-J1(3)-J_{1}(15)-J_{1}(7)$

$=2\mathrm{x}2-(-248)-(-192513)-(-4119)$

$=196884$.

$c_{2}= \frac{1}{2}(J_{1}(7)+J_{1}(-1)-J1(31)-J1(23)-J1(7))$

$=(J_{1}(-1)-J1(31)-J1(23))/2$

$=(-1-(-39493539)-(-3493982))/2$
$=21493760$ .

Several remarks are in order:
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1) In each sum in the formula, only finitely many terms are not $0$ .

2) By using relation (3) in the next section, the formula can also be written as

$c_{n}= \frac{1}{n}\sum_{r\in \mathbb{Z}}\{J_{1}(n-r)2-\frac{(-1)^{n+\Gamma}}{4}J_{1}(4n-r^{2})+\frac{(-1)^{r}}{4}J1(16n-r^{2})\}$ . (1)

3) As is well known from the theory of complex multiplication, the sum $\sum_{[a_{\circ}]}(j(ao)-$

$744)$ in the definition of $J_{1}(d)$ is the (absolute) trace of the algebraic integer $j(\mathcal{O})-744$ ,
from which it follows that the summand $\frac{2}{w_{\mathcal{O}}}\sum_{[\mathrm{Q}_{Q}}1(j(\mathrm{Q}o)-744)$ is an integer if $\mathcal{O}\neq \mathcal{O}_{3},$ $\mathcal{O}_{4}$ .

On the other hand, using the well known values $j(\mathcal{O}_{3})=0$ and $j(\mathcal{O}_{4})=$ 1728, as well as
$w_{\mathcal{O}_{3}}=6$ and $w_{\mathcal{O}_{4}}=4$ , and the fact that the class numbers of $\mathcal{O}_{3}$ and $\mathcal{O}_{4}$ are both 1, we
obtain $\frac{2}{w_{\mathcal{O}}}\sum_{[\alpha_{\mathcal{O}}]}(j(a_{\mathcal{O}})-744)=-248,492$ for $\mathcal{O}=\mathcal{O}_{3},$ $\mathcal{O}_{4}$ , respectively. Hence $J_{1}(d)$ is
always a rational integer. Values of $J_{1}(d)$ up to $d=100$ are given in the table at the end of
the paper.

4) The values of $J_{1}(d)$ can be calculated recursively and in an elementary way (without
knowing anything about complex multiplication) using

$J_{1}(4n-1)=-a-n \sum_{\leq 2r\leq\sqrt{4n+1}}r^{2}J_{1}(4n-r^{2})$
,

$J_{1}(4n)=-2 \leq r\leq\sqrt{4n+1}\sum_{1}J1(4n-r)2$

for $n\geq 0$ , where $a_{0}=1,$ $a_{n}=240 \sum_{d|n}d^{3}(n\geq 1)$ , and an empty sum is understood to be
$0$ . This is due to D. Zagier (see the next section).

5) In the language of binary quadratic forms, the definition of $J_{1}(d)$ reads as follows:

$J_{1}(d)= \sum_{]1Q}\frac{2}{|\mathrm{A}\mathrm{u}\mathrm{t}(Q)|}(j(\alpha_{Q})-744)$
,

where the sum is over a set of representatives of the $SL_{2}(\mathbb{Z})$ -equivalence classes of integral,
not necessarily primitive, positive-definite quadratic forms of discriminant $-d,$ $|\mathrm{A}\mathrm{u}\mathrm{t}(Q)|$

denotes the order of the automorphism group of $Q$ in $SL_{2}(\mathbb{Z})$ , and $\alpha_{Q}$ is the imaginary
quadratic irrationality in $\mathfrak{H}$ that corresponds to $Q$ .

3. Proof

The crucial point in the proof of the theorem is provided by the following result due
to Don Zagier.

Theorem (D. Zagier [7]). The series

$g_{1}(\mathcal{T})=$
$\sum_{d>-1}J_{1}(d)q^{d}$

$d\equiv\overline{0},3(4)$
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is a modular form of weight $\frac{3}{2}$ on $\Gamma_{0}(4)=\{\in SL_{2}(\mathbb{Z}), 4|c\}$ , holomorphic in $\mathfrak{H}$ and
meromorphic at cusps. Specifically,

$g_{1}( \mathcal{T})=-\frac{E_{4}(4\tau)\theta_{1}(_{\mathcal{T})}}{\eta(4\tau)^{6}}$, (2)

where $E_{4}( \tau)=\sum_{n=0}^{\infty}a_{n}qn$ is the normalized Eisenstein series of weight 4 ( $a_{n}$ being as
in the preceding remark 4)), $\eta(\tau)=q^{\frac{1}{24}}\prod_{n=1}^{\infty}(1-q^{n})$ is the Dedekind $eta$ function, and
$\theta_{1}(\tau)=\sum_{n\in \mathbb{Z}}(-1)^{n}q^{n}2$ is one of the standard theta series of Jacobi.

He proved this by showing
$\sum_{r\in \mathbb{Z}}J_{1}(4n-r^{2})=0$

$n\geq 0$ (3)

and

$\sum_{r\in \mathbb{Z}}(n-r^{2})J1(4n-r)2=2an$
$n\geq 0$ . (4)

Since it is easy to check that the coefficients of the expression on the right-hand side of
(2) satisfy the same recursions, and since the recursions clearly determine the coefficients
uniquely, this proves (2) and hence the theorem. (See the book of Eichler-Zagier [3] for
these kinds of recursions and a connection with the theory of Jacobi forms.) The $mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{S}}$

(3) and (4) were deduced from a classical $\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\dot{\mathrm{u}}\mathrm{l}\mathrm{a}$ on the diagonal $0\dot{\mathrm{f}}$ the Kronecker modular
equation and from a similar $\mathrm{f}\mathrm{o}\mathrm{r}\dot{\mathrm{m}}$ula due to M. Eichler. For details and discussion on the
relation between the present discussion and a theorem of R. Borcherds [2], see Zagier’s
forthcoming paper [7].

By virtue $0\dot{\mathrm{f}}$ this theorem, we can unify our formula, or rather the equivalent formula
(1), into an identity between modular forms (of weight 2) as

$\frac{1}{2\pi i}\frac{d}{d\tau}j(\tau)=g_{1}(\tau)\theta_{\mathrm{o}(\mathcal{T}})-\frac{1}{4}((g1\theta 1)|U_{4})(\tau+\frac{1}{2})+\frac{1}{4}((g1\theta 1)|U^{2}4)(\mathcal{T})$ ,

where $\theta_{0}(\tau)=\sum_{n\in \mathbb{Z}}q^{n^{2}}$ , and $U_{4}$ is the operator $\sum b_{n}q^{n}\mapsto\sum b_{4n}q^{n}$ , which, as well as the
translation $\tau\mapsto\tau+\frac{1}{2}$ , sends a modular form to a modular form of the same weight (but
possibly on a different group). Hence, owing to the finite-dimensionality of the space of
modular forms of a given weight and a group which are $\mathrm{h}\mathrm{o}1_{\mathrm{o}\mathrm{m}}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{c}$ . except possible poles
of bounded order at cusps, the equality holds if the first several Fourier coefficients coincide,
which is indeed the case. Thereby the proof of our theorem is completed.

Incidentally, the relations (3) and (4) give us a formula for quick and elementary
calculation of $J_{1}(d)$ , as mentioned in the preceding section; we can also calculate $J_{1}(d)$ by
(2) or by the following formulas:

$\sum_{d\geq 0,\equiv 0(4)}J1(d)q^{d/4}=2\frac{E_{4}(\tau)}{\theta_{0}(\tau)\theta_{1}(\mathcal{T})4}$ ,

$\sum_{d\geq-1,\equiv 3(4)}J_{1}(d)q=/4-2d\frac{E_{4}(\tau)}{\theta_{2}(\tau)\theta 1(\mathcal{T})4}$ ,
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where $\theta_{2}(\tau)=\sum_{n\in \mathbb{Z}}q^{(n+}\frac{1}{2})^{2}$ is the other standard theta series of Jacobi.

A more “natural” proof of the theorem is provided by taking into account the action
of the Hecke operators. Specifically, an argument like the one used to prove (3) shows that

$\sum_{r\in \mathbb{Z}}J2(4n-r)2=2nCn(n\geq 0)$
, (6)

where, in general, we define

$J_{m}(d)= \sum_{\mathcal{O}\supseteq \mathit{0}_{d}}\frac{2}{w_{\mathcal{O}}}\sum_{[ao]}((j-744)|\tau_{m})(a_{o})$ ( $T_{m}$ : the Hecke operator of weight $0$ )

for any $m\geq 1$ . The relation (6) is then transformed into our theorem using the relations

$J_{2}(d)=J_{1}(4d)+( \frac{-d}{2})J_{1}(d)+2J1(\frac{d}{4})$ (7)

and (3), where $( \frac{-d}{2})$ is Kronecker’s symbol and $J_{1}( \frac{d}{4})=0$ if $\frac{d}{4}$ is not an integer. The relation
(7) and similar relations for $J_{m}(d)$ can be interpreted as saying that the Hecke actions on
$g_{1}(\tau)$ and on $j(\tau)$ are compatible, as discussed in Zagier [7].

Table Values of $J_{1}(d)$ for-l $\leq d\leq 100$ .
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