Title: A generalization of Kohnen's estimates for Fourier coefficients of Siegel cusp forms

Author(s): Horie, Taro

Citation: 数理解析研究所講究録 (1996), 965: 145-152

Issue Date: 1996-08

URL: http://hdl.handle.net/2433/60589

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
A generalization of Kohnen's estimates for Fourier coefficients of Siegel cusp forms

Taro Horie (堀江 太郎)

Graduate school of Polymathematics, Nagoya University
Chikusa-ku, Nagoya 464-01, Japan
E-mail:t-horie@math.nagoya-u.ac.jp

The purpose of this article is to show that the main result of [K] is valid for any level.

Theorem. Let F be a cusp form of integral or half integral weight $k(>2)$ with respect to the subgroup $\Gamma_2(N)$ of $\text{Sp}_2(\mathbb{Z})$, where

$$\Gamma_2(N) := \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_2 \mid C \equiv 0 \pmod{N} \right\}.$$

And let its Fourier expansion be given by

$$F(Z) = \sum_T a(T) \exp(2\pi i \text{tr} T(Z)),$$

where T runs over positive definite symmetric half-integral 2×2-matrices. Then we have

$$a(T) \ll \epsilon, F(\min T)^{5/18+\epsilon} (\det T)^{(k-1)/2+\epsilon} \quad (\forall \epsilon > 0), \quad (1)$$

where $\min T$ is the smallest positive integer represented by T.

The idea to prove Theorem is the same as in [K], that is a combination of appropriate estimates for both Fourier coefficients of Jacobi Poincaré series and Petterson norms of Fourier-Jacobi coefficients of Siegel modular forms.

\mathcal{H}_i denotes the Siegel upper half space of degree i consisting of complex $i \times i$-matrices with positive definite imaginary part. We often write

$$Z = X + iY = \begin{pmatrix} \tau & z \\ z & \tau' \end{pmatrix} = \begin{pmatrix} u + iv & x + iy \\ x + iy & u' + iv' \end{pmatrix} \in \mathcal{H}_2.$$

For simplicity, we consider only the integral weight case.

Proposition 1. We let $\Gamma_1'(N)$ be the Jacobi group which is the semi direct product of $\Gamma_1(N)$ and \mathbb{Z}^2, and let $J_{k,m}^{\text{cusp}}(N)$ be the space of holomorphic Jacobi cusp forms on $\mathcal{H}_1 \times \mathbb{C}$ of weight k and index m with respect to $\Gamma_1'(N)$ (cf. e.g. [E-Z]).
For ϕ in $J_{k,m}^{\text{cusp}}(N)$, let $c(n, r)$ be the (n, r)-th Fourier coefficient of ϕ ($n, r \in \mathbb{Z}, r^2 < 4mn$). Put $D = r^2 - 4mn$. Then we have

$$c(n, r) \ll_{\epsilon, k} (m + |D|^{1/2+\epsilon})^{1/2} \frac{|D|^{k/2-3/4}}{m^{(k-1)/2}} ||\phi|| \quad (\forall \epsilon > 0)$$

where the constant implied in \ll depends only on ϵ and k (not on m).

Proof. Let $P_{n,r} = P_{k,m,n,r}$ be the (n, r)-th Jacobi Poincaré series in $J_{k,m}^{\text{cusp}}(N)$ characterized by

$$\langle \psi, P_{n,r} \rangle = \lambda_{k,m,D} b_{n,r}(\psi) \quad (\forall \psi \in J_{k,m}^{\text{cusp}}(N))$$

where $b_{n,r}(\psi)$ denotes the (n, r)-th Fourier coefficients of ψ and

$$\lambda_{k,m,D} := \frac{1}{2} \Gamma(k - \frac{3}{2}) \pi - k + \frac{3}{2} k - m \frac{2|D|^{-k/2} + \frac{3}{2}}{m^{(k-1)/2}}$$

Then the Cauchy-Schwarz inequality gives

$$|c(n, r)|^2 \leq \lambda_{k,m,D}^{-2} ||\phi||^2 \langle P_{n,r}, P_{n,r} \rangle v = \lambda_{k,m,D}^{-1} b_{n,r}(P_{n,r}) ||\phi||^2$$

We can show that the Fourier coefficient of $P_{n,r}$ as follows (cf. [G-K-Z], p.519);

$$b_{n,r}(P_{n,r}) = 1 + (-1)^k \delta_m(r) + \frac{i^k \pi \sqrt{2}}{\sqrt{m}} \sum_{N|c \geq 1} c^{-3/2} (\exp(r^2/2mc) H_{m,c}^+(n, r) + (-1)^k \exp(-r^2/2mc) H_{m,c}^-(n, r)) J_{k-3/2} \left(\frac{\pi |D|}{mc} \right),$$

where

$$\delta_m(r) = \begin{cases} 1 & \text{if } r \equiv 0 \pmod{m} \\ 0 & \text{otherwise} \end{cases}$$

$J_{k-3/2}$ is the modified Bessel function of order $k - 3/2$, and

$$H_{m,c}^{\pm}(n, r) := \sum_{x(c), y(c)} e_c((mx^2 + rx + n)y + ny \pm rx),$$

where x resp. y run through $\mathbb{Z}/c\mathbb{Z}$ resp. $(\mathbb{Z}/c\mathbb{Z})^*$, \bar{y} denotes an inverse of $y \pmod{c}$, $e_c(b) := \exp(2\pi ib/c)$ for $c \in \mathbb{N}$, $b \in \mathbb{Z}/c\mathbb{Z}$, $\varepsilon(y) = 1$ or i according as $y \equiv 1 \pmod{4}$ or $\equiv 3 \pmod{4}$, and $(\cdot \mid \cdot)$ means the Kronecker symbol. $H_{m,c}^{\pm}(n, r)$ is a certain character sum, which is Gauss sum for x and Kloosterman sum for y, and by factorizing c to prime powers, for $D := r^2 - 4mn$ we can prove an estimate

$$H_{m,c}^{\pm}(n, r) \ll \epsilon c^{-1-\epsilon} (D, c) \quad (\forall \epsilon > 0).$$

From this and the estimate

$$J_{k-3/2}(x) \ll_k \min \{x^{-1/2}, x^{k-3/2} \} \quad (x > 0)$$

(cf. e.g. [B], p.4 and p.74), we easily find

$$b_{n,r}(P_{n,r}) \ll_{\epsilon,k} 1 + \frac{|D|^{1/2+2\epsilon}}{m}$$

for any $\epsilon > 0$ and complete the proof.
To estimate Petterson norm $||\phi||$, for an analogue of the Rankin convolution series

$$D_{F,F}(s) := \zeta(2s - 2k + 4) \sum_{n \geq 1} \langle \phi_n, \phi_n \rangle n^{-s}$$

where

$$F(z) = \sum_{n \geq 1} \phi_n(z) \exp(2\pi i n \tau'),$$

we want to use the following Landau's Theorem;

Theorem (Landau-Shintani). Suppose that

$$\xi(s) = \sum_{n \geq 1} c(n) n^{-s}, \quad \xi_i(s) = \sum_{n \geq 1} c_i(n) n^{-s} \quad (1 \leq i \leq I)$$

are Dirichlet serieses with non-negative coefficients which converge for $\Re(s) > \sigma_0$, have meromorphic continuation to \mathbb{C} with finitely many poles and satisfy a functional equation

$$\xi^*(\delta - s) = \sum_{i=1}^{I} \xi_i^*(s)$$

where

$$\xi_i^*(s) = B A^i \prod_{j=1}^{J} \Gamma(a_j s + b_j) \xi(s) \quad (A \in \mathbb{C}, B \in \mathbb{C}, a_j > 0, b_j \in \mathbb{R}),$$

$$\xi_i^*(s) = B_i A_i^s \prod_{j=1}^{J} \Gamma(a_j s + b_j) \xi(s) \quad (A_i \in \mathbb{C}, B_i \in \mathbb{C}, a_j and b_j are same as above).$$

Suppose

$$\kappa := (2\sigma_0 - \delta) \sum_{j=1}^{J} a_j - \frac{1}{2} > 0.$$

Then we have

$$\sum_{n \leq x} c(n) = \sum_{s \text{all poles}} \text{Res} \left(\frac{\xi(s)}{s} x^s \right) + O_\eta(x^\eta)$$

for any $\eta > \eta_0 := (\delta + \sigma_0(k - 1))/(k + 1)$.

For the proof, see Theorem 3 and its proof in [S-S].

The central extension of $\Gamma_1^J(N)$ by \mathbb{Z} is embedded into $\Gamma_2(N)$ via

$$\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \lambda, \mu, \kappa \right) \mapsto \begin{pmatrix} a & b & \mu' \\ \lambda & 1 & \mu & \kappa \\ c & 0 & d & -\lambda' \end{pmatrix}, \quad (\lambda, \mu) = (\lambda', \mu') \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$
and we denote by C_N the image in $\Gamma_2(N)$. Denote the left upper entry of $Z \in \mathcal{H}_2$ by Z_1. For a natural number N, $Z \in \mathcal{H}_2$ and $s \in \mathbb{C}$ with $\text{Re}(s) \gg 2$ we define a Klingen-Siegel type Eisenstein series

$$E_{s,N}(Z) := \sum_{M \in C_N \Gamma_2(N)} \left(\frac{\det \text{Im} M \langle Z \rangle}{\text{Im} M \langle Z \rangle_1} \right)^s.$$

It is easily seen that this series is well defined, absolutely convergent, and invariant under the action of $\Gamma_2(N)$. We put

$$E_{s,N}^*(Z) := \pi^{-s} \Gamma(s) \zeta(2s) E_{s,N}(Z).$$

By Main Lemma on p.545 in [K-S], we know $E_{s,1}(Z)$ has a meromorphic continuation to \mathbb{C}, has only two poles at $s = 0, 2$ which are simple, and satisfies a functional equation

$$E_{2-s,1}^*(Z) = E_{s,1}^*(Z).$$

By the method of Rankin-Selberg convolution

$$\pi^{-k+2} \langle F E_{s-k+2,N}, F \rangle = D_{F,F}^*(s)$$

(2)
can be proved, and analytic properties of $D_{F,F}^*(s)$ follow from those of $E_{s,N}^*(s)$. But the functional equations are complicated.

The idea to prove Theorem for any level N is to write the functional equations satisfied by Eisenstein series as a form

$$E_{2-s,N}^*(Z) = \text{a linear combination of } E_{s,m}^*(Z)$$

where m is a natural number with $m|N$. This is necessary to apply Rankin’s method.

Lemma 1. $E_{s,N}(Z)$ has a meromorphic continuation to \mathbb{C}. Its poles are $s = 0$ and 2, which are simple. And it satisfies a functional equation

$$E_{2-s,N}^*(Z) = \text{a finite sum of } \frac{\pm n^s}{P(s)} E_{s,m}^*(Z),$$

where m, n are natural numbers with $m|N$ and $P(s)$ is a finite product of $1 - \tilde{m}^{2(2-s)}$ with $\tilde{m}|m$.

Proof. For $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_2(N)$, we notice that

$$\frac{\det \text{Im} M \langle Z \rangle}{\text{Im} M \langle Z \rangle_1} = \frac{|Y|}{Y \begin{pmatrix} c_4 & -c_3 \\ -d_3 & -d_4 \end{pmatrix}}$$

$$(Y \begin{pmatrix} a \\ b \end{pmatrix}) := (\bar{a}, \bar{b}) Y \begin{pmatrix} a \\ b \end{pmatrix}, Z^*$ means the adjoint matrix of $Z) and the mapping

$$\begin{pmatrix} * & * & * & * \\ c_3 & c_4 & d_3 & d_4 \end{pmatrix} \mapsto (c_3, c_4, d_3, d_4)$$
induces a bijection between

\[C_N \backslash \Gamma_2(N) \text{ and } \{(c_3, c_4, d_3, d_4) \in \mathbb{Z}^4 \mid \text{primitive and } c_3 \equiv c_4 \equiv 0 \pmod{N}\}. \]

In the following sums, \(c = \begin{pmatrix} c_3 \\ c_4 \end{pmatrix} \), \(d = \begin{pmatrix} d_3 \\ d_4 \end{pmatrix} \) run over \(\mathbb{Z}^2 \) under the condition that
\(c_3, c_4, d_3, d_4 \) are relatively prime. In general, for a square free integer \(m \) and a natural number \(l = p_1^{e_1}p_2^{e_2} \ldots p_r^{e_r} \in \mathbb{N} \) (where \(p_1, p_2, \ldots, p_r \) are different prime numbers and \(e_i > 0 \)) it holds

\[
\frac{1}{l^s} E_{s,m}(lZ) = \sum_{\substack{(t_c, t_d) = 1 \\ c \equiv 0 \pmod{m}}} \frac{|Y|^s}{(Y[Z^s t_c + d]^s)}
\]

\[
= \left(\sum_{(t_c, t_d) = 1 \atop (t_f, t_d) \neq 1} \frac{|Y|^s}{(Y[Z^s t_c + d]^s)} + \sum_{(t_c, t_d) = 1 \atop c \equiv 0 \pmod{m}} \frac{|Y|^s}{(Y[Z^s t_c + d]^s)} \right)
\]

\[
\sum_{\substack{(t_c, t_d) = 1 \atop c \equiv 0 \pmod{m}}} \frac{1}{(l/p_i)^{2s}} \sum_{t_c \equiv 0 \pmod{m}} \frac{|Y|^s}{(Y[Z^s ((l/p_i)c + d)]^s)}
\]

\[
- \sum_{i \neq j} \frac{1}{(l/p_i p_j)^{2s}} \sum_{t_c \equiv 0 \pmod{m}} \frac{|Y|^s}{(Y[Z^s ((l/p_i p_j)c + d)]^s)}
\]

\[
+ \ldots
\]

\[
= \sum_{i} \frac{1}{p_i^{2s}} \left(\sum_{t_c \equiv 0 \pmod{m}} - \sum_{t_c \equiv 0 \pmod{m}} \right) \frac{|Y|^s}{(Y[Z^s ((l/p_i)c + d)]^s)}
\]

\[
- \ldots
\]

\[
= \sum_{i} \frac{1}{(p_i)^{2s}} \{E_{s,m}((l/p_i)Z) - E_{s,1,c.m.(m,p_i)}((l/p_i)Z)\}
\]

\[
- \sum_{i \neq j} \frac{1}{(l/p_i p_j)^{s}} \{E_{s,m}((l/p_i p_j)Z) - E_{s,1,c.m.(m,p_i)}((l/p_i p_j)Z) - E_{s,1,c.m.(m,p_j)}((l/p_i p_j)Z)
\]

\[
+ E_{s,1,c.m.(m,p_i p_j)}((l/p_i p_j)Z)\}
\]

+ \ldots
We apply (3) for \(m = 1 \) and \(l = N \); if \(N \) is not square-free the last term is \(E_{s,N}(Z) \), otherwise the last two terms are \((-N^{-2s} - 1)E_{s,N}(Z)\), and in the both cases the rests are \(\pm \tilde{n}^{-s}E_{s,\overline{m}}(lZ) \) where \(\overline{l}, \tilde{m}, \overline{n} \) are natural numbers with \(\overline{l}\tilde{m}|N, \tilde{m} < N \). Hence for a non-square-free number \(N \) we have

\[
E_{s,N}(Z) = \text{a finite sum of } \pm n^s E_{s,m}^*(IZ)
\]

where \(l, m, n \) are natural numbers with \(lm|N, m < N \), and for a square-free number \(N \) we have

\[
(1 - N^{2s})E_{s,N}(Z) = \text{a finite sum of the same type as above.}
\]

So, by induction on \(N \) we deduce that \(E_{s,N}(Z) \) has a meromorphic continuation to \(\mathbb{C} \), has poles only at \(s = 0, 2 \) and satisfies a functional equation

\[
E_{2-s,N}^*(Z) = \text{a finite sum of } \frac{\pm n^s}{P_1(s)} E_{s,m}^*(IZ)
\]

where \(l, m, n \) are natural numbers with \(lm|N \) and \(P_1(s) \) is a finite product of \(1 - \tilde{m}^{2(2-s)} \) with \(\tilde{m}|m \). Now we notice that (3) makes \(l \) smaller, and apply (3) repeatedly in all terms in this right-hand side until \(l \) becomes 1, then finally we get the functional equation in Lemma 1.

Then we can use Rankin's method and deduce

Lemma 2. Let the notations be as above, and take a natural number \(m \) with \(m|N \). For \(L \in \Gamma_2 \), we write the Fourier expansions of \(F(L^{-1}(Z)) \) as

\[
F(L^{-1}(Z)) = \sum_{n \geq 1} \phi_{n,L}(\tau, z) \exp \left(\frac{2\pi in\tau'}{N} \right).
\]

We define a Dirichlet series \(D_{F,F,m}(s) \) as \(\zeta(2s - 2k + 4) \) times

\[
\sum_{n \geq 1} \left\{ \sum_{L \in \Gamma_2(N) \setminus \Gamma_2(m)} \int_{\mathcal{F}} |\phi_{n,L}(\tau, z)|^2 \exp \left(-\frac{4\pi ny^2}{vN} \right) v^{k-3} du dv dx dy \right\} n^{-s}
\]

where \(\mathcal{F} \) is a fundamental domain \(\Gamma_1^1(m) \backslash \mathcal{H}_1 \times \mathbb{C} \) (so \(D_{F,F,N}(s) = D_{F,F}(s) \)), and put

\[
D_{F,F,m}^*(s) := (2\pi)^{-2s} \Gamma(s) \Gamma(s - k + 2) D_{F,F,m}(s).
\]

Then we have

\[
\pi^{-k+2} \langle FE^* - k + 2, m' FS \rangle = N^s D_{F,F,m}^*(s).
\]
From (2), (4) and Lemma 1 we have proved

Proposition 2. $D_{F,F,m}(s)$ is a Dirichlet series which has a meromorphic continuation to \mathbb{C}, possibly has a unique pole at $s = k$, and satisfies a functional equation

$$D^{*}_{F,F}(2k - 2 - s) = D^{*}_{F,F,N}(2k - 2 - s)$$

a finite sum of $\frac{\pm n^{s}}{P(s)}D^{*}_{F,F,m}(s)$

where m, n are natural numbers with $m|N$ and $P(s)$ is a finite product of $1 - \tilde{m}^{2(k-s)}$ with $\tilde{m}|m$.

Now we can use Landau's Theorem for $D_{F,F,m}(s)'s$, because $D_{F,F,m}(s)/(1 - p^{2(k-s)})$ has non-negative coefficients and has a unique pole at $s = k$, hence it converge for $s > k$. Therefore we have

$$\sum_{n \leq x} ||\phi_{n}||^{2} = \left(\text{Res}_{s=k} \frac{D_{F,F}(s)}{s} \right) x^{k} + O_{\epsilon}(x^{k-4/9 + \epsilon}) \quad (\forall \epsilon > 0)$$

where ϕ_{n} is the n-th Fourier-Jacobi coefficient of $F(Z)$. Taking $x = m$ and $x = m - 1$ and subtracting, we find

$$||\phi_{m}||^{2} \ll_{\epsilon,F} m^{k-4/9 + \epsilon},$$

hence

$$||\phi_{m}|| \ll_{\epsilon,F} m^{k/2 - 2/9 + \epsilon} \quad (\forall \epsilon > 0). \quad (5)$$

By Proposition 2 and (5), we obtain

$$c(n, r) \ll_{\epsilon,k} (m + |D|^{1/2 + \epsilon})^{1/2} |D|^{5/18 + \epsilon}.$$

Both sides of (1) are invariant if T is replaced by $^tUTU \quad (U \in GL_2(\mathbb{Z}))$. Hence we may assume that

$$T = \begin{pmatrix} n & r/2 \\ r/2 & m \end{pmatrix}, \quad m = \min T,$$

so that $a(T) = c(n, r)$. By reduction theory we have $m = \min T \leq \frac{2}{\sqrt{3}}|D|^{1/2}$ and complete the proof of Theorem.

Remark.

1. When $N = 1$, the Rankin convolution series $D_{F,F}(s)$ is a linear combination of spinor zeta functions of Hecke eigen forms, as shown in [K-S]. In order to deduce estimates for eigenvalues of Hecke operators, we need find a relation between $D_{F,F,m}(s)'s$ and spinor zeta functions.
2. When we generalize Kohnen's method to higher genus, we should cut Z as follows;

$$Z = \begin{pmatrix}
* & \ldots & * & * \\
\vdots & \ddots & \vdots & \vdots \\
* & \ldots & * & *
\end{pmatrix}_{\tau'}$$

References

[T] Tanigawa, Y., Modular descend of Siegel modular forms of half ntegral weight and an analogy of the Maass relation, Nagoya Math. J. 102 (1986) 51-77