<table>
<thead>
<tr>
<th>Title</th>
<th>Spherical functions on spherical homogeneous spaces and Rankin-Selberg convolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kato, Shin-ichi; Murase, Atsushi; Sugano, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1996), 965: 12-22</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1996-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/60596</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Spherical functions on spherical homogeneous spaces and Rankin-Selberg convolution

In this note, we study spherical functions on certain p-adic spherical homogeneous spaces. We show the existence, uniqueness and an explicit formula of the spherical functions, and study its application to Rankin-Selberg convolution. Though we treat only the orthogonal group case in this note, similar results hold for other cases.
§1. Preliminaries

1.1 In this and the next sections, we let \mathbb{F} be a non-archimedean local field of characteristic different from 2, and denote by \mathcal{O} the integer ring of \mathbb{F}. Fix a prime element π of \mathbb{F} and put $q = \#(\mathcal{O}/\pi\mathcal{O})$. Let $1\cdot1$ be the normalized valuation of \mathbb{F} ($|\pi| = q^{1}$). We denote by \mathbb{F}_{n}^{m} the space of $m \times n$ matrices whose entries are in \mathbb{F}. For a symmetric matrix S of degree m and $x \in \mathbb{F}_{n}^{m}$, we put $S[x] = x^t S x$. For a real number α, we denote by $[\alpha]$ the integer with $\lfloor \alpha \rfloor \leq \alpha < \lfloor \alpha \rfloor + 1$.

1.2 Let m be a positive integer and put $n = \left\lfloor \frac{m}{2} \right\rfloor$. Let S_{m} be a symmetric matrix of degree m given by

\[
S_{m} = \begin{cases}
\begin{bmatrix} 0 & J_{n} \\ J_{n} & 0 \end{bmatrix} & \text{if } m \text{ is even} \\
\begin{bmatrix} 0 & 0 & J_{n} \\ 0 & 2 & 0 \\
J_{n} & 0 & 0 \end{bmatrix} & \text{if } m \text{ is odd}
\end{cases}
\]

where $J_{n} = \begin{bmatrix} 0 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \end{bmatrix} \in \mathrm{GL}_{n}(\mathbb{F})$. Denote by G_{m} (or $O(m)$) the orthogonal group of S_{m}: $G_{m} = O(m) = \{ g \in \mathrm{GL}_{m}(\mathbb{F}) \mid g^t S_{m} g = S_{m} \}$. Let $K_{m} = G_{m}(\mathcal{O})$ be a maximal open compact subgroup of G_{m}. We normalize the Haar measure dg on G_{m} so that $\text{vol}(K_{m}) = 1$.

1.3 We define an embedding ι_{m} of G_{m} into G_{m+1} as follows:

(a) If $m = 2n$ is even,

\[
\iota_{m}(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a & 0 & b \\ 0 & 1 & 0 \\ c & 0 & d \end{bmatrix}
\]

where $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G_{m}$ is the block decomposition corresponding to the partition $m = n + n$.
(b) If $m = 2n + 1$ is odd,

$$t_m\left(\begin{array}{ccc}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{array}\right) = \left[\begin{array}{ccc}
a_1 & a_2 & a_3 \\
\frac{b_2+1}{2} & \frac{b_2-1}{2} & b_3 \\
\frac{b_2-1}{2} & \frac{b_2+1}{2} & b_3 \\
c_1 & \frac{c_2}{2} & \frac{c_2}{2} & c_3
\end{array}\right]$$

where $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \in G_m$ is the block decomposition corresponding to the partition $m = n + 1 + n$.

1.4 For an integer $r (1 \leq r \leq n = \lfloor \frac{m}{2} \rfloor)$, let

$$N_{m,r} = \{ v_{m,r}(x, y) := \begin{bmatrix} 1_r - J_r & x S_{m-2r} J_r(y - \frac{1}{2} S_{m-2r}[x]) \\ 0 & 1_{m-2r} \end{bmatrix} | x \in F_n^{m-2r}, y \in Alt_r(F) \}$$

and

$$M_{m,r} = \{ \mu_{m,r}(a, h) := \begin{bmatrix} a & 0 \\ h & 0 \\ 0 & \tilde{a} \end{bmatrix} | a \in GL_r(F), h \in G_{m-2r} \},$$

where $Alt_r = \{ y \in F_r^r | y + y = 0 \}$ and $\tilde{a} = J_r^t a^{-1} J_r$ for $a \in GL_r$. Then $P_{m,r} = N_{m,r} M_{m,r}$ is a maximal parabolic subgroup of G_m.

1.5 Let $T_m = \{ d_m(t_1, \ldots, t_n) \mid t_1, \ldots, t_n \in F^X \}$ be a maximal F-split torus of G_m, where $d_m(t_1, \ldots, t_n)$ denotes the matrix $\text{diag}(t_1, \ldots, t_n, t_n^{-1}, \ldots, t_1^{-1})$ if m is even and $\text{diag}(t_1, \ldots, t_n, 1, t_n^{-1}, \ldots, t_1^{-1})$ if m is odd. For $t = d_m(t_1, \ldots, t_n) \in T_m$, put $\delta_m(t) = d(t v t^{-1})/dv = \prod_{i=1}^n |t_i|^{m-2i}$, where dv is a Haar
measure on \(N_{m,n} \) (= a maximal unipotent subgroup of \(G_m \)). Denote by \(X_{unr}(T_m) \) the group of unramified characters of \(T_m \). We let the Weyl group \(W := N_{G_m}(T_m)/T_m \) act on \(X_{unr}(T_m) \) by \((w\chi)(t) = \chi(w^{-1}tw)\).

1.6 Let \(\mathcal{H}_m = \mathcal{H}(G_{m}, K_{m}) \) be the Hecke algebra of \((G_{m}, K_{m})\). For \(\chi \in X_{unr}(T_m) \), let \(\phi_\chi \) be a function on \(G_m \) defined by \(\phi_\chi(vtk) = (\delta_{m}^{1/2}\chi)(t) \) for \(v \in N_{m,n}, t \in T_m, k \in K_m \). Define a \(\mathbb{C} \)-homomorphism \(\chi^\wedge \) of \(\mathcal{H}_m \) to \(\mathbb{C} \) by

\[
\chi^\wedge(\phi) = \int_{G_m} \phi_\chi(g) \phi(g) \, dg \quad (\phi \in \mathcal{H}_m).
\]

Then \(\chi \mapsto \chi^\wedge \) gives rise to a bijection between \(W_m \backslash X_{unr}(T_m) \) and \(\text{Hom}_{\mathbb{C}}(\mathcal{H}_m, \mathbb{C}) \) (cf. [Sa]).

1.7 Let \(T_r^* = \begin{bmatrix} t_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & t_r \end{bmatrix} \) be a maximal split torus of \(\text{GL}_r(F) \). Let \(\xi \in X_{unr}(T_r^*) \) and \(\chi \in X_{unr}(T_m) \). We often identify \(\xi \) and \(\chi \) with \((\xi_1, \cdots, \xi_r) \in (\mathbb{C}^\times)^r \) and \((\chi_1, \cdots, \chi_n) \in (\mathbb{C}^\times)^n \) determined by \(\xi(\text{diag}(\pi_1^{k_1}, \cdots, \pi_r^{k_r})) = \xi_1^{k_1} \cdots \xi_r^{k_r} \) and \(\chi(\text{diag}(\pi_1^{\ell_1}, \cdots, \pi_n^{\ell_n})) = \chi_1^{\ell_1} \cdots \chi_n^{\ell_n} \) for \((k_1, \cdots, k_r) \in \mathbb{Z}^r \) and \((\ell_1, \cdots, \ell_n) \in \mathbb{Z}^n \), respectively. We define the L-factor \(L(\xi \otimes \chi; s) \) by

\[
L(\xi \otimes \chi; s) = \prod_{1 \leq i < s, 1 \leq j \leq n} (1 - \xi_i \chi_j q^{-s})(1 - \xi_i^{-1} \chi_j^{-1} q^{-s})^{-1}.
\]

We also define the L-factors \(L(\xi, \text{Sym}^2; s) \) and \(L(\xi, \text{Alt}^2; s) \) by

\[
L(\xi, \text{Sym}^2; s) = \prod_{1 \leq i < j \leq r} (1 - \xi_i \xi_j q^{-s})^{-1}, \quad L(\xi, \text{Alt}^2; s) = \prod_{1 \leq i < j \leq r} (1 - \xi_i \xi_j q^{-s})^{-1}.
\]

§2. Local spherical functions

2.1 Let \(m' \) and \(r \) be non-negative integers and put \(m = m' + 2r + 1 \). Let

\[
G = G_m, K = K_m, T = T_m, \mathcal{H} = \mathcal{H}_m, n = \left\lfloor \frac{m}{2} \right\rfloor
\]

\[
G' = G_{m'}, K' = K_{m'}, T' = T_{m'}, \mathcal{H}' = \mathcal{H}_{m'}, n' = \left\lfloor \frac{m'}{2} \right\rfloor
\]
and identify G' with a subgroup of G via $g' \mapsto \mu_{m,r}(1, 1_{m'}(g'))$.

2.2 Let $U = U_{m,r} = N_{m,r} \cdot \{ \mu_{m,r}(z, 1) \mid z \in Z_r \}$ where Z_r is the group of upper unipotent matrices in $GL_r(F)$. Throughout this section, we fix an additive character ψ of F with conductor σ. We define a character ψ_U of U by

$$\psi_U(v_{m,r}(x, y) \mu_{m,r}(z, 1)) = \psi(x_{n'+1,1} - \epsilon_m x_{n'+2,1} + \sum_{i=1}^{r-1} z_{i,i+1})$$

for $x \in M_{m-2r,r}(F)$, $y \in Alt_r(F)$ and $z \in Z_r$, where we put

$$\epsilon_m = \begin{cases} 1 & \text{if } m \text{ is even} \\ 0 & \text{if } m \text{ is odd.} \end{cases}$$

It is easy to see that G' normalizes U and fixes ψ_U.

2.3 For $(\chi', \chi) \in X_{unr}(T') \times X_{unr}(T)$, let

$$\Omega(\chi', \chi) = \{ \mathcal{W} : G \mapsto \mathbb{C} \}$$

such that

(i) $\mathcal{W}(uk'gk) = \psi_U(u) \mathcal{W}(g)$ ($u \in U$, $k' \in K'$, $g \in G$, $k \in K$)

(ii) $\varphi'^* \mathcal{W} * \varphi = \chi'^\wedge(\varphi') \chi^\wedge(\varphi) \mathcal{W}$ ($\varphi' \in \mathcal{H}'$, $\varphi \in \mathcal{H}$).

Here

$$(\varphi'^* \mathcal{W} * \varphi)(g) = \int_{G'} dx' \int_G dx \varphi'(x') \mathcal{W}(x'gx) \varphi(x).$$

We call $\Omega(\chi', \chi)$ the space of spherical functions on G attached to (χ', χ).

2.4 Remark

(i) Let $G = G' \times G$ and $H = (UG')^{\text{diag}} \subset G$. Then H is a spherical subgroup of G and $\mathcal{W} \in \Omega(\chi', \chi)$ may be regarded as a spherical function of (G, H) (cf. [GP]).

(ii) When $m' = 0$ or 1, these functions are the usual Whittaker functions. Bump, Friedberg and Furusawa [BFF] have studied the spherical functions in the case $m' = 2$, and Murase and Sugano [MS] considered the case $r = 0$.

16
2.5 Let $L_n = \mathbb{Z}^n$ and $L_n^+ = \{ (\ell_1, \ldots, \ell_n) \in L_n \mid \ell_1 \geq \cdots \geq \ell_n \geq 0 \}$. For $\ell = (\ell_1, \ldots, \ell_n) \in L_n$, put $t_m(\ell) = d_m(\pi^{\ell_1}, \ldots, \pi^{\ell_n}) \in T_m$. We define $t_{m'}(\ell') \in T_{m'}$ for $\ell' \in L_n$ similarly. Let g_0 be an element of G given by

$$g_0 = \begin{cases}
\mu_{m,r}(1, \begin{bmatrix} A & 0 \\ 0 & \bar{A} \end{bmatrix}) & \text{if } m \text{ is even} \\
\mu_{m,r}(1, \begin{bmatrix} 1_n' - 2^tX - tXXJ_n' \\
0 & 1 \\
0 & 1_n' \end{bmatrix}) & \text{if } m \text{ is odd}
\end{cases}$$

where $X = (1, \ldots, 1) \in F^n'$ and $A = \begin{bmatrix} 1_n' \end{bmatrix} \in GL_{n'+1}(F)$. For $(\ell', \ell) \in L_n \times L_n$, put $g(\ell', \ell) = t_{m'}(\ell') g_0 t_m(\ell) \in G$.

2.6 Theorem (Cartan decomposition) We have

$$G = \coprod UK' \cdot g(\ell', \ell) \cdot K$$

(disjoint union)

where ℓ' runs over L_n^+ and ℓ over $L_r \times L_{n-r}$.

2.7 Corollary For $\varphi' \in \Omega(\chi', \chi)$, we have

$$\text{Supp } \varphi \subset \coprod UK' \cdot g(\ell', \ell) \cdot K$$

where ℓ' runs over L_n^+ and ℓ over L_n^+.

2.8 Using the Cartan decomposition (Corollary 2.7) and a similar method of [Shin] and [Ka], we obtain the following existence and uniqueness of spherical functions:

Theorem For $(\chi', \chi) \in X_{\text{unr}}(T') \times X_{\text{unr}}(T)$, there uniquely exists $w_{\chi', \chi} \in \Omega(\chi', \chi)$ with $w_{\chi', \chi}(1) = 1$. In particular, we have $\dim C \Omega(\chi', \chi) = 1$.

2.9 For $\chi \in X_{\text{unr}}(T)$, we put

$$\Delta_m(\chi) = \prod_{1 \leq i < j \leq n} (1 - \chi_i^{-1} \chi_j)(1 - \chi^{-1}_{i} \chi^{-1}_j) \times \begin{cases} 1 & \text{if } m \text{ is even} \\
\prod_{1 \leq i \leq n} (1 - \chi_i^{-2}) & \text{if } m \text{ is odd.} \end{cases}$$
We define \(\Delta_{\mathrm{m}'}(\chi') \) for \(\chi' \in X_{\text{unr}}(T') \) similarly. For \((\chi', \chi) \in X_{\text{unr}}(T) \times X_{\text{unr}}(T')\), we put

\[
D(\chi', \chi) = \Delta_{\mathrm{m}'}(\chi')^{-1} \Delta_{\mathrm{m}}(\chi)^{-1} \prod_{1 \leq i \leq m'} (1 - q^{-1/2}(x_i^\chi)^{-1}) \prod_{1 \leq j \leq n} (1 - q^{-1/2}(x_j^\chi)^{-1})
\]

where \(\eta_{ij} = \begin{cases} 1 & \text{if } j \leq r + i \\ -1 & \text{if } j > r + i \end{cases} \)

Put \(Q_{\mathrm{m}'} = \begin{cases} (1 - q^{n'}) \prod_{1 \leq i \leq n'} (1 - q^{-2i}) & \text{if } m' = 2n' \\ \prod_{1 \leq i \leq n'} (1 - q^{-2i}) & \text{if } m' = 2n' + 1. \end{cases} \)

2. 10 The following explicit formula can be proved by a method similar to that of [CS].

Theorem For \((\chi', \chi) \in X_{\text{unr}}(T) \times X_{\text{unr}}(T')\), let \(W_{\chi', \chi} \in \Omega(\chi', \chi) \) be as in Theorem 2.8. Then, for \((\ell', \ell) \in L^+_n \times L^+_n\), we have

\[
W_{\chi', \chi}(g(\ell', \ell)) = \frac{1}{Q_{\mathrm{m}'}} \sum_{w' \in W_{\mathrm{m}'}, w \in W_{\mathrm{m}}} D(w'\chi', w\chi) \\
\times \left(w'\chi' \delta_{\mathrm{m}'}^{1/2} \right) (t_{\mathrm{m}'}(\ell')) \left(w\chi \delta_{\mathrm{m}}^{1/2} \right) (t_{\mathrm{m}}(\ell)).
\]

§3. Application to Rankin-Selberg convolution

3. 1 Let \(G = G_m \) and \(G^* = G_{m-1} \) be the orthogonal group of \(S_m \) and \(S_{m-1} \) defined over \(\mathbb{Q} \). We regard \(G^* \) as a subgroup of \(G \) via \(t_{m-1} \). Let \(r \) be an integer with \(1 \leq r \leq \left[\frac{m - 1}{2} \right] \). Let \(P^* = N_{m-1,r} M_{m-1,r} \) be a maximal parabolic subgroup of \(G^* \) and put \(G' = G_{m'} \) with \(m' = m - 2r - 1 \). Then \(\mu^* = \mu_{m-1,r} \) gives an isomorphism of \(\GL_r \times G' \) onto \(M_{m-1,r} \).

3. 2 Let \(\varphi \) be an automorphic form on \(\GL_r(\mathbb{A}) \) with central character \(\omega \). Assume that \(\varphi \) is right-invariant under \(\prod_{p < \infty} \GL_r(\mathbb{Z}_p) \) and square integrable over \(\GL_r(\mathbb{Q}) \backslash \GL_r(\mathbb{A})^1 \), where \(\GL_r(\mathbb{A})^1 = \{ g \in \GL_r(\mathbb{A}) \mid \det(g) \mid_A = 1 \} \). We also
let f be an automorphic form on $G'(A)$ right-invariant under $\prod_{p<\infty} G'(\mathbb{Z}_p)$ and square integrable over $G'(\mathbb{Q}) \backslash G'(A)$. Define a function $\phi(\cdot; \varphi \otimes f)$ on $G^*(A) \times \mathbb{C}$ by

$$\phi(v^* \mu^*(a, g') k^*, s; \varphi \otimes f) = \varphi(a) f(g') \det a^{(m'^* + r - 1)/2},$$

where $v^* \in N_{m-1,r}(A)$, $a \in GL_r(A)$, $g' \in G'(A)$ and $k^* \in K^* \prod_{p<\infty} G^*(\mathbb{Z}_p)$ (K^* is a suitable maximal compact subgroup of $G^*(\mathbb{R})$). The Eisenstein series

$$\sum_{\gamma \in P^*(\mathbb{Q}) \backslash G^*(\mathbb{Q})} \phi(\gamma g^*; s; \varphi \otimes f)$$

is absolutely convergent for $\text{Re}(s) >> 0$ and continued to a meromorphic function of s on the whole \mathbb{C}.

3. 3 Let F be a cusp form on $G(A)$ right-invariant under $\prod_{p<\infty} G(\mathbb{Z}_p)$. The object of this section is to study the following Rankin-Selberg convolution

$$Z_{F, \varphi \otimes f}(s) = \int_{G^*(\mathbb{Q}) \backslash G^*(A)} F(g^*) E(g^*, s - \frac{1}{2}; \varphi \otimes f) \, dg^*.$$

The function $Z_{F, \varphi \otimes f}(s)$ is continued to a meromorphic function of s on the whole \mathbb{C}.

3. 4 Let $U = U_{m,r} \subset G$ and $\psi_U \in \text{Hom}(U(A), \mathbb{C}^\times)$ be as in §2.2 replacing ψ with the additive character ψ_A of $Q \backslash A$ such that $\psi_A(x_\infty) = \exp(2\pi i x_\infty)$ for $x_\infty \in \mathbb{R}$. We set

$$\psi_{f,F}(g) = \int_{U(\mathbb{Q}) \backslash U(A)} \int_{G'(\mathbb{Q}) \backslash G'(A)} dg' f(g') \psi_U(u)^{-1} F(u \mu^*(1, g') g)$$

for $g \in G(A)$ and

$$W_\varphi(x) = \int_{Z_r(\mathbb{Q}) \backslash Z_r(\mathbb{A})} \psi_A(\sum_{i=1}^{r-1} z_{i,i+1}) \varphi(zx) \, dz$$

for $x \in GL_r(A)$.
3.5 Unfolding the Eisenstein series in the integral of $Z_{F, \varphi \otimes f}(s)$, we get

Proposition (The basic identity)

$$Z_{F, \varphi \otimes f}(s) = \int_{(A^\times)^r} W_\varphi(\text{diag}(t_1, \ldots, t_r)) \, \mathcal{W}_{f, F}(\mu^*(\text{diag}(t_1, \ldots, t_r), 1))$$

$$\times \prod_{i=1}^r |t_i|_A^{-(m+r+1)/2+2i} \, dt_1 \cdots dt_r.$$

3.6 We now assume that φ, f and F are Hecke eigenform. Let $\xi_p \in X_{\text{unr}}(T_r^*(Q_p))$, $\chi'_p \in X_{\text{unr}}(T_m(Q_p))$, and $\chi_p \in X_{\text{unr}}(T_m(Q_p))$ be the corresponding Satake parameters at p. For each p, the restriction of $\mathcal{W}_{f, F}$ to $G(Q_p)$ belongs to $\Omega(\chi'_p, \chi_p)$. Then Theorem 2.8 implies that

$$\mathcal{W}_{f, F}(g) = \mathcal{W}^{(\infty)}_{f, F}(g) \prod_{p<\infty} \mathcal{W}_p' \mathcal{W}_p(g_p)$$

for $g = g_{\infty} \prod_{p<\infty} g_p \in G(A)$, where $\mathcal{W}_{f, F}^{(\infty)}$ is the restriction of $\mathcal{W}_{f, F}$ to $G(R)$. It is well-known that a similar fact holds for W_φ:

$$W_\varphi(x) = W_\varphi^{(\infty)}(x_{\infty}) \prod_{p<\infty} W_{\xi_p}(x_p)$$

for $x = x_{\infty} \prod_{p<\infty} x_p \in G(L_r(A))$, where W_{ξ_p} is the p-adic Whittaker function attached to ξ_p on $GL_r(Q_p)$ with $W_{\xi_p}(1) = 1$ (cf. [Shin]) and $W_\varphi^{(\infty)}$ is the restriction of $W_\varphi^{(\infty)}$ to $GL_r(R)$. Therefore we obtain the Euler product decomposition for $Z_{F, \varphi \otimes f}(s)$:

$$Z_{F, \varphi \otimes f}(s) = Z_{F, \varphi \otimes f}^{(\infty)} \prod_{p<\infty} Z_p(s),$$

$$Z_{F, \varphi \otimes f}^{(\infty)}(s) = \int_{(R^\times)^r} W_\varphi^{(\infty)}(\text{diag}(t_1, \ldots, t_r)) \, \mathcal{W}_{f, F}^{(\infty)}(\mu^*(\text{diag}(t_1, \ldots, t_r), 1))$$

$$\times \prod_{i=1}^r |t_i|_\infty^{-(m+r+1)/2+2i} \, dt_1 \cdots dt_r.$$
\[Z_p(s) = \int_{(\mathbb{R}^*)^r} W_{\xi_p} (\text{diag}(t_1, \ldots, t_r)) \, W_{\chi_{p'}} \, \chi_p \, (\mu^*(\text{diag}(t_1, \ldots, t_r), 1)) \]
\[\times \prod_{i=1}^{r} |t_i|^\frac{s-(m+r+1)/2+2i}{p} \, d^x t_1 \ldots d^x t_r. \]

3.7 By using Theorem 2.10 and Shintani's explicit formula for \(W_{\xi_p} \) ([Shin]), we obtain the following:

Theorem

\[Z_p(s) = \frac{L(\xi_p \otimes \chi_p, s)}{L(\xi_p \otimes \chi_{p'}, s + 1/2)} \times \begin{cases} L(\xi_{p'}, \text{Sym}^2, 2s)^{-1} & \text{if } m \text{ is even} \\ L(\xi_{p'}, \text{Alt}^2, 2s)^{-1} & \text{if } m \text{ is odd.} \end{cases} \]

3.8 **Remark** Similar results hold for the integral of \(F \) on \(O(m) \) against the restriction to \(O(m) \) of Eisenstein series on \(O(m+1) \).
References

[Sa] Satake, I.: Theory of spherical functions on reductive algebraic groups over p-adic fields, I.H.E.S. Publ. Math. 18, 5-69 (1963)