Title
On the exterior problem of compressible Navier-Stokes equation (Nonlinear Evolution Equations and Applications)

Author(s)
Kobayashi, Takayuki

Citation
数理解析研究所講究録 1996, 966: 170-189

Issue Date
1996-09

URL
http://hdl.handle.net/2433/60599

Type
Departmental Bulletin Paper

Publisher
Kyoto University
On the exterior problem of compressible Navier-Stokes equation

Takayuki Kobayashi

Institute of Mathematics, University of Tsukuba, Tsukuba-shi, Ibaraki 305

§0. Introduction.

Let Ω be an exterior domain in \mathbb{R}^3 with compact smooth boundary $\partial\Omega$. The motion of a compressible viscous and heat-conductive fluid is described by the following system

\[
\begin{align*}
\rho_t + (v \cdot \nabla)\rho + \rho \cdot \text{div} v &= 0 \quad \text{in } [0, \infty) \times \Omega, \\
v_t + (v \cdot \nabla)v &= \frac{\mu}{\rho} \Delta v + \frac{\mu' + \mu}{\rho} \cdot \nabla(\text{div} v) - \frac{\nabla P(\rho, \theta)}{\rho} \quad \text{in } [0, \infty) \times \Omega, \\
\theta_t + (v \cdot \nabla)\theta + \frac{k}{\rho \cdot c} \cdot \text{div} v &= \frac{k}{\rho \cdot c} \Delta \theta + \frac{\Psi}{\rho \cdot c} \quad \text{in } [0, \infty) \times \Omega, \\
v|_{\partial\Omega} = v|_{\infty} = 0, \quad \theta|_{\partial\Omega} = \theta|_{\infty} = \theta_0 \quad \text{on } [0, \infty) \times \partial\Omega, \\
(\rho, v, \theta)(0, x) = (\rho_0, v_0, \theta_0)(x) \quad \text{in } \Omega,
\end{align*}
\]

where ρ is the density, $v = (v_1, v_2, v_3)$ the velocity, θ the absolute temperature, $P = P(\rho, \theta)$ the pressure, μ and μ' the viscosity coefficients, k the coefficient of the heat conduction, c the heat capacity at constant volume and Ψ is the dissipation function:

\[\Psi = \frac{\mu}{2}(\partial_k v_j + \partial_j v_k)^2 + \mu'(\partial_k v_j)^2.\]

In this lecture we consider the following linearized equations for the system (0.1), i.e.,

\[
\begin{align*}
\rho_t + \gamma \text{div} v &= f_1 \quad \text{in } [0, \infty) \times \Omega, \\
v_t - \alpha \Delta v - \beta \nabla(\text{div} v) + \gamma \nabla \rho + \omega \nabla \theta &= f_2 \quad \text{in } [0, \infty) \times \Omega, \\
\theta_t - \kappa \Delta \theta + \omega \cdot \nabla v &= f_3 \quad \text{in } [0, \infty) \times \Omega, \\
v|_{\partial\Omega} = v|_{\infty} = 0, \quad \theta|_{\partial\Omega} = \theta|_{\infty} = 0 \quad \text{on } [0, \infty) \times \partial\Omega,
\end{align*}
\]
(ρ, v, θ)(0, x) = (ρ₀, v₀, θ₀)(x) \text{ in } Ω,

where α, γ, κ, ω are positive numbers and β is a nonnegative number.

Our main results are the following. Let 1 < q < ∞, m be an integer and \(W^m_q(Ω) = \{W^m_q(Ω)\}^3 \) be the usual Sobolev space. Set
\[X^m_q(Ω) = \{Tu; u ∈ W^{m+1}_q(Ω) × W^m_q(Ω) × W^m_q(Ω)\}, \]
where \(Tu \) means the transposed u. Define the 5 × 5 matrix operator \(A \) by the relation:
\[A = \begin{pmatrix} 0 & γ \text{div} & 0 \\ γν & -αΔ - β \text{div} ν & 0 \\ 0 & ν \text{div} & -κΔ \end{pmatrix}, \]
with the domain:
\[\mathcal{D}(A) = \{Tu; u = (ρ, v, θ) ∈ W^1_q(Ω) × W^2_q(Ω) × W^2_q(Ω), \]
\[ν|\partialΩ = 0, \ θ|\partialΩ = 0 \text{ on } ∂Ω\}. \]

Let \(P \) be the projection from \(\mathcal{D}(A) \) into \{Tu; (v, θ) ∈ W^2_q(Ω) × W^2_q(Ω), \]
\[ν|\partialΩ = 0, \ θ|\partialΩ = 0 \text{ on } ∂Ω\} \) and \(ρ(-A) \) be the resolvent set of the operator \(-A\). Then

Theorem A. Let 1 < q < ∞ and m be an integer ≥ 0. Then \(-A\) is a closed linear operator in \(X^m_q(Ω) \) and
\[(0.4) \quad ρ(-A) ⊃ Σ = \{λ ∈ C; C \text{Re}λ + (\text{Im}λ)^2 > 0\}, \]
where C is a constant depending only on α, β, γ, κ and ω. Moreover, the following properties are valid: There exist positive constants \(λ₀ \)
and \(δ < \frac{π}{2} \) such that
\[\|λ\| \|A + λA\|^{-1} f\|_{X^m_q(Ω)} + \|P(λ + A)^{-1} f\|_{2^m,q,Ω} ≤ C(λ₀, δ, m)\|f\|_{X^m_q(Ω)} \]
for any \(λ - λ₀ \in Σ_δ = \{λ ∈ C; |\text{arg}λ| ≤ π - δ\} \) and any \(f ∈ X^m_q(Ω)\).

Theorem A means that \(-A\) generates an analytic semigroup \(e^{-tA} \) on \(X^m_q(Ω) \). Then setting
\[(0.5) \quad X^m_q,b(Ω) = \{u ∈ X^m_q(Ω); u(x) = 0 \text{ for } x ∈ R^3 \setminus B_b\}, \]
we have

Theorem B. (local energy decay) Let $1 < q < \infty$ and let b_0 be a fixed number such that $B_{b_0} \supset \mathbb{R}^3 \setminus \Omega$. Suppose that $b > b_0$ and $\Omega_b = \Omega \cap B_b$. Then for $\phi \in C_0^\infty(\Omega_b)$ such that $\int_{\Omega_b} \phi(x)dx = 1$ and $u = T(\rho, v, \theta) \in X_{q,b}(\Omega)$, we have the following representation

$$e^{-tA}u = T_1(b, \phi, t)u + T_2(b, \phi, t)u$$

where e_j ($j = 1, 2, \ldots, 5$) are unit row vectors, $N_b = \int _D \rho(x)dx$ and

$$T_1(b, \phi, t)u = e^{-A \{u - (N_b \uparrow \iota) \cdot \phi e_1 \}},$$

$$T_2(b, \phi, t)u = (N_b \uparrow \iota \phi \cdot e_1 - \int_0^t e^{-sA} \frac{\partial \phi}{\partial r} ds \}.$$

Moreover, the following estimates are valid: for $M \geq 0$ integer, $u \in X_{q,b}(\Omega)$ and $t > 0$

$$\| \partial_t^M T_1(b, \phi, t)u \|_{X_q(\Omega)} + \| \partial_t^{M+1} T_1(b, \phi, t)u \|_{2, q, \Omega} \leq C(q, b, \phi, M)t^{-3/2-M}\| u \|_{X_q(\Omega)},$$

$$\| \partial_t^M T_2(b, \phi, t)u \|_{X_q(\Omega)} + \| \partial_t^{M+1} T_2(b, \phi, t)u \|_{2, q, \Omega} \leq C(q, b, \phi, M)t^{-3/2-M}\| u \|_{X_q(\Omega)}.$$

System (0.2) was given by Matsumura and Nisida [12] and Ponce [17]. They seek solutions for the system (0.1) in a neighborhood of a constant state $(\rho, v, \theta) = (\rho_0, 0, \theta_0)$ where ρ_0, θ_0 are positive constants under the following assumptions:

1. μ, μ' are constants $\mu > 0$ and $\frac{2}{3}\mu + \mu' \geq 0$.
2. c, k are positive constants.
3. P is a known function of ρ, θ, smooth in a neighborhood of (ρ_0, θ_0) where $\frac{\partial P}{\partial \rho}, \frac{\partial P}{\partial \theta} > 0$.

Note that the assumption (1) is stronger than ours because they
also study the Neumann boundary condition.

In equations (0.1), put \(\alpha = \frac{\mu}{\rho_0} \), \(\beta = \frac{\mu+\mu'}{\rho_0} \), \(\gamma = \left\{ \frac{\partial p}{\partial \rho} (\rho_0, \bar{\theta}_0) \right\}^{1/2}, \kappa = \frac{k}{c\rho_0} \) and put \(\omega = \frac{1}{\rho_0} \cdot \frac{\partial p}{\partial \rho} (\rho_0, \bar{\theta}_0) \left\{ \bar{\theta}_0/\chi \right\}^{1/2} \). Then using the notation \((\rho, v, \theta)\) for the vector \(\left(\frac{1}{\rho_0} \cdot \frac{\partial p}{\partial \rho} (\rho_0, \bar{\theta}_0) \right)^{1/2} \rho, v, \left(\frac{\chi}{\bar{\theta}_0} \right)^{1/2} \theta \) and separating the linear part of the equations (0.1) becomes the equations (0.2).

The existence theorems of unique solution local in time for the system (0.1) are obtained by Nash [15], Itaya [7, 8] for the initial value problem, and by Tani [20] for the initial boundary value problem. On the other hand the existence theorem of global solution in time for the system (0.1) are obtained by Matsumura and Nishida [12, 13], Ponce [17] for the initial problem, and by Matsumura and Nishida [14] for the initial boundary value problem in \(L_2\)-framework for sufficiently small initial data. In addition Matsumura and Nishida [14] show that this solution approaches the stationary state as \(t \to \infty \), and also Deckelnick [3, 4] gives explicit estimates for the decay rate. Concerning the linearized equations (0.2), Matsumura and Nishida [12] give the spectral analysis and energy estimates of solutions in \(L_2\)-sense and Ponce [17] the \(L_p-L_q\) estimates for solutions in \(R^3\), respectively.

In this note, we shall continue to study linearized equations (0.2) in order to obtain the \(L_q\)-theory for the system (0.1). We shall show that the operator defined on this system generates analytic semigroup although the system (0.2) is hyperbolic-parabolic type. In particular, the resolvent set of this operator contains a parabolic region. We shall also show the local energy decay of solutions for
the system (0.2). The local energy decay plays an important role in obtaining the solutions of nonlinear problems, in particular, L_p-L_q estimates of solutions. For instance, Iwashita [9] for Navier-Stokes equations, Kobayashi and Shibata [11] for Oseen equations, Iwashita and Shibata [10] and Shibata [19] for elastic and wave equations, they prove the existence of solutions for nonlinear problems by using this method.

§1. Stationary problem in a bounded domain

In this section we consider the stationary problem in a bounded domain D in \mathbb{R}^3 with smooth boundary ∂D;

\begin{align*}
(1.1a) & \quad \lambda \rho + \gamma \cdot \text{div} v = f_1 \quad \text{in } D, \\
(1.1b) & \quad \lambda v - \alpha \Delta v - \beta \nabla (\text{div} v) + \gamma \cdot \nabla \rho + \omega \cdot \nabla \theta = f_2 \quad \text{in } D, \\
(1.1c) & \quad \lambda \theta - \kappa \Delta \theta + \omega \cdot \text{div} v = f_3 \quad \text{in } D, \\
(1.1d) & \quad v|_{\partial D} = 0 \quad \text{on } \partial D, \\
(1.1e) & \quad \theta|_{\partial D} = 0 \quad \text{on } \partial D.
\end{align*}

Here λ is a complex parameter. Our goal of this section is to show the following theorem concerning a unique existence of solutions to (1.1). Let $1 < q < \infty$, m be an integer and let

$$Y^m_q(D) = \{ T\{f_1, f_2, f_3\} \in X^m_q(D); \int_D f_1(x)dx = 0 \}, \quad Y_q(D) = X^0_q(D),$$

where $X^m_q(D)$ is the same symbol as in (0.7). Set A_D be the maximal restriction to closed subspace $Y_q(D)$. Applying this notation to (1.1), we have $(\lambda + A_D) u = f$ in $Y_q(D)$ where $u = T\{\rho, v, \theta\}$ and $f = T\{f_1, f_2, f_3\}$. Then

Theorem 1.1. Let $1 < q < \infty$, m be a nonnegative integer. Then A_D is a closed linear operator in $Y_q(D)$ and

$$\rho(-A_D) \supset \{0\} \cup \Sigma'$$
where \(\Sigma' = \{ \lambda \in \mathbb{C}; \text{Re}(\gamma) > 0 \} \). Moreover, the following properties are valid: There exists a number \(0 < \delta < \frac{\pi}{2} \) such that

\[
|\lambda| (\lambda + A_D)^{-1} f \in L^q(D) + \|P(\lambda + A_D)^{-1} f\|_{m+2,q,D} \leq C(q,m,\delta,D) \|f\|_{L^q(D)}
\]

for any \(\lambda \in \Sigma_\delta \cup \{0\} \) and any \(f \in L^q(\Omega) \).

To prove this theorem we shall use the following properties.

First proposition is concerned the existence theorem of solutions to the Stokes equations.

Proposition 1.2. ([2]) Let \(1 < q < \infty \), \(0 < \delta < \frac{\pi}{2} \), \(m \) be an integer \(\geq 0 \). Then for every \(f \in W^m_q(D) \) and every \(g \in W^{m+1}_q(D) \) with \(\int_D g(x)dx = 0 \) there exists a unique \(u \in W^{m+2}_q(D) \) which together with some \(p \in W^{m+1}_q(D) \) satisfying

\[
-\Delta u + \nabla p = f, \text{ divu} = g \text{ in } D,
\]

\[
u = 0 \text{ on } \partial D.
\]

Here \(p \) is unique up to an additive constant. Furthermore, the following estimate is valid:

\[
\|u\|_{m+2,q,D} + \|\nabla p\|_{m,q,D} \leq C(\|f\|_{m,q,D} + \|g\|_{m+1,q,D}),
\]

where \(C = C(D,q,\varepsilon) \) is a constant.

The next proposition is well-known as a general Poincaré's inequality.

Proposition 1.3. (cf., eg. [3]) Let \(1 \leq q < \infty \). There exists a constant \(C > 0 \) such that the inequality

\[
\|u\|_{q,D} \leq C(\|u\|_{q,D} + \|\nabla u\|_{q,D} + \int_D |u(x)dx|),
\]

holds for any \(u \in W^1_q(D) \). Furthermore, if \(q \neq 1 \), \(D \) is bounded and if \(u \in W^1_q(D) \) with \(u = 0 \) on \(\partial D \), then we have

\[
\|u\|_{q,D} \leq C\|\nabla u\|_{q,D}.
\]
The following proposition is concerned the existence theorem of solutions to the elastic equations.

Proposition 1.3. Let \(1 < q < \infty \), \(m \) be an integer \(\geq 0 \). Let \(\alpha \) be a positive number, \(\eta \) be a complex number such that \(\alpha + \eta \neq 0 \). Then there exist positive numbers \(\lambda_0 \) and \(0 < \delta < \frac{\pi}{2} \) satisfying the following conditions: For every \(\lambda - \lambda_0 \in \Sigma_\delta \), every \(f \in W^m_q(D) \) there exists a unique \(u \in W^{m+2}_q(D) \) such that

\[
\lambda u - \alpha \Delta u - \eta \nabla \text{div} u = f \text{ in } D, \quad u|_{\partial D} = 0 \text{ on } \partial D.
\]

Furthermore the following estimates is valid:

\[
|\lambda| \|u\|_{m,q,D} + \|u\|_{m+2,q,D} \leq C \|f\|_{m,q,D},
\]

where \(C = C(D,q,m,\delta,\lambda_0,\alpha,\eta) \) is a constant.

Remark 1.4. In Theorem 1.1 when \(\int_D f_1 \, dx \neq 0 \), taking \(\varphi \in C_0^\infty(D) \) such that \(\int_D \varphi(x) \, dx = 1 \) and define the operators \(N_j = N_j(\varphi,D) \) \((j = 1, 2, 3) \) from \(X_q(D) \) into itself by the notations:

\[
\begin{align*}
N_1 f &= f - (N_D f) \cdot e_1 \\
N_2 f &= - (N_D f) \begin{pmatrix} \partial \varphi \\ 0 \end{pmatrix} \quad \text{for } f = T\{f_1,f_2,f_3\} \in X_q(D), \\
N_3 f &= (N_D f) \varphi \cdot e_1
\end{align*}
\]

where \(N_D f \) is the same symbol as in Theorem B. Then we can write \((\lambda + \Delta)^{-1}\) as follows:

\[
(\lambda + \Delta)^{-1} = (\lambda + \Delta_D)^{-1}N_1 + \frac{1}{\lambda}(\lambda + \Delta_D)^{-1}N_2 + \frac{1}{\lambda \cdot \delta}N_3,
\]

which implies that \(-\Delta \) is a closed linear operator in \(X_q(D) \), \(\rho(-\Delta) \supset \Sigma' \) and the following properties are valid:

\[
|\lambda| \|(\lambda + \Delta)^{-1}f\|_{X_q^m(D)} + \|P(\lambda + \Delta)^{-1}f\|_{m+2,q,D} \leq C(\delta,m,D)\{\|f\|_{X_q^m(D)} + \frac{1}{|\lambda|} \|f\|_{q,D}\}
\]

for any \(\lambda \in \Sigma_\delta \) and any \(f \in X_q^m(D) \). Also note that this estimate holds
even if D is an exterior domain because usual elliptic estimates hold.

\section{On the stationary problem in \mathbb{R}^3}

In this section, we shall show the basic estimations of solutions to the following stationary linearized equations in \mathbb{R}^3 with a complex parameter λ:

\begin{align*}
\lambda p + \gamma \cdot \text{div} v &= f_1, \\
\lambda v - \alpha \Delta v - \beta \nabla (\text{div} v) + \gamma \cdot \nabla p + \omega \cdot \nabla \Theta &= f_2 \quad \text{in } \mathbb{R}^3, \\
\lambda \theta - \kappa \Delta \theta + \omega \cdot \text{div} v &= f_3.
\end{align*}

By taking Fourier transform on (2.1) we obtain

$$[\lambda \cdot \mathbf{I} + \hat{A}(\xi)] \hat{u} = \hat{f},$$

where I is the identity, $\mathcal{F}(f) = \hat{f}$ stand for the Fourier transforms of f, $u = T(\rho, v, \theta)$, $f = T(f_1, f_2, f_3)$. Here $\hat{A}(\xi)$ is a 5×5 symmetric matrix as follows:

$$\hat{A}(\xi) = \begin{pmatrix}
0 & i\gamma \xi_k & 0 \\
- i\gamma \xi_j & \delta_{jk} \alpha |\xi|^2 + \beta \xi_j \xi_k & i\omega \xi_j \\
0 & i\omega \xi_k & \kappa |\xi|^2
\end{pmatrix}$$

where $i = \sqrt{-1}$ and $\delta_{jk} = 0$ when $k \neq j$ and $= 1$ when $k = j$. Then we have

\begin{align*}
(2.2a) \quad [\lambda \cdot \mathbf{I} + \hat{A}(\xi)]^{-1} &= \{\det[\lambda \cdot \mathbf{I} + \hat{A}(\xi)]\}^{-1} \hat{A}(\lambda; \xi), \\
(2.2b) \quad \det[\lambda \cdot \mathbf{I} + \hat{A}(\xi)] &= (\lambda + \alpha |\xi|^2)^2 F(\lambda; |\xi|),
\end{align*}

where

\begin{align*}
(2.2c) \quad F(\lambda; |\xi|) &= \lambda^3 + (\alpha + \beta + \kappa) |\xi|^2 \lambda^2 + (\alpha + \beta + \kappa + \omega^2 + (\alpha + \beta) \kappa |\xi|^2) \xi \cdot |\xi|^2 \lambda + \gamma^2 \kappa |\xi|^4,
\end{align*}

and $\hat{A}(\lambda; \xi) = (\hat{a}_{ij}(\lambda; \xi))$ is the 5×5 matrix and the components are

\begin{align*}
\hat{a}_{11} &= (\lambda + \alpha |\xi|^2)^2 \{\lambda^2 + (\alpha + \beta + \kappa) |\xi|^2 \lambda + [\omega^2 + (\alpha + \beta) \kappa |\xi|^2] \cdot |\xi|^2\}, \\
\hat{a}_{15} &= \hat{a}_{51} = - \gamma \omega (\lambda + \alpha |\xi|^2)^2 \xi \cdot |\xi|^2, \\
\hat{a}_{1,j} &= \hat{a}_{j,1} = - i\gamma (\lambda + \alpha |\xi|^2)^2 (\lambda + \kappa |\xi|^2) \xi_{j-1} \quad (j = 2, 3, 4), \\
\hat{a}_{5,j} &= \hat{a}_{j,5} = - i\omega (\lambda + \alpha |\xi|^2)^2 \xi_{j-1} \quad (j = 2, 3, 4), \\
\hat{a}_{55} &= (\lambda + \alpha |\xi|^2)^2 \{\lambda^2 + (\alpha + \beta) |\xi|^2 \lambda + \gamma^2 |\xi|^2\}.
\end{align*}
\[\tilde{a}_{1j} = (\lambda + \alpha |\xi|^2)(\lambda + \alpha |\xi|^2)(\lambda + \kappa |\xi|^2) \delta_{1j} \\
+ (\delta_{1j} |\xi|^2 - \xi_{1-1} \xi_{j-1})(\beta \lambda^2 + [\beta \kappa |\xi|^2 + \omega^2 + \gamma^2] \lambda + \gamma^2 \kappa |\xi|^2). \]

\[(1, j = 2, 3, 4).\]

From the spectral analysis of \(\hat{A}(\xi) \) given by Matsumura and Nishida [12] (cf. Ponce [17]) we have

Lemma 2.1. Let \(\{\lambda_j(\xi)\}_{j=1}^5 \) be the roots of \(\det[\lambda \cdot I + \hat{A}(\xi)] = 0, \)

where \(\lambda_4(\xi) = \lambda_5(\xi) = -\alpha |\xi|^2. \) Then it follows that:

(i) \(\lambda_j(\xi) \) depends on \(|\xi| \) only, \(\lambda_j(0) = 0 \) and \(\text{Re} \lambda_j(\xi) < 0 \) for any \(|\xi| > 0, \) \(j = 1, \ldots, 5. \)

(ii) \(\lambda_j(\xi) \neq \lambda_k(\xi), \) \(j \neq k \) and \(j, k = 1, 2, 3, 4 \) for all \(|\xi| \) except at most four points of \(|\xi| > 0. \)

(iii) There exist positive constants \(r_1 \) such that \(\lambda_j(\xi) \) has a Taylor series expansion for \(|\xi| < r_1 \) as follows: \(\lambda_1(\xi) = \frac{\lambda_2(\xi)}{\sqrt{\lambda_2(\xi)}} \) is a complex number, \(\lambda_3(\xi) \) is a real number and

\[\lambda_1(\xi) = (\gamma^2 + \omega^2)^{1/2} (i |\xi|) + \frac{(\gamma^2 + \omega^2)(\alpha + \beta + \omega \kappa (i |\xi|)^2}{2(\gamma^2 + \omega^2)} + \cdots, \]

\[\lambda_3(\xi) = \frac{\gamma^2}{\gamma^2 + \omega^2} (i |\xi|)^2 + \frac{\gamma^2 \omega \kappa^2 \{(\gamma^2 + \omega^2)(\alpha + \beta) - \gamma^2 \kappa \}}{(\gamma^2 + \omega^2)^4} (i |\xi|)^4 + \cdots. \]

Similarly, there exist positive constants \(r_2 > r_1 \) such that \(\lambda_j(\xi) \) has a Laurent series expansion for \(|\xi| > r_2 \) as follows: If \(\alpha + \beta \neq \kappa, \) then \(\lambda_j(\xi) \) are real numbers and

\[\lambda_1(\xi) = (\alpha + \beta)(i |\xi|)^2 + \frac{\gamma^2 \kappa - (\gamma^2 + \omega^2)(\alpha + \beta)}{(\alpha + \beta)(\alpha + \beta - \kappa)} + \cdots, \]

\[\lambda_2(\xi) = \kappa (i |\xi|)^2 - \frac{\omega}{\kappa^2} + \cdots, \]

\[\lambda_3(\xi) = -\frac{\gamma^2}{\alpha + \beta} + \cdots. \]

If \(\alpha + \beta = \kappa, \) then \(\lambda_1(\xi) = \frac{\lambda_2(\xi)}{\sqrt{\lambda_2(\xi)}} \) is a complex number, \(\lambda_3(\xi) \) is a real number and

\[\lambda_1(\xi) = \kappa (i |\xi|)^2 + \sqrt{\omega} (i |\xi|) + \cdots, \]
\(\lambda_3(\xi) = -\frac{r^2}{\kappa} + \cdots \cdots \cdots \).

(iv) There exists a positive constants \(\beta_0, \beta_1, \beta_2 \) and \(r_1 \) such that

\[-\beta_0 |\xi|^2 \leq \text{Re} \lambda_j(\xi) \leq -\beta_1 |\xi|^2 \text{ for } |\xi| < r_1 \text{ and } \text{Re} \lambda_j(\xi) < -\beta_2 \text{ for } |\xi| > r_2, \ j = 1, 2, \cdots, 5. \]

Now we set for \(f \in X_q(R^3) \), \(f = \{f_j\}_{j=1}^5 \)

\[R_0(\lambda)f(x) = \mathcal{F}^{-1}\{[\lambda I + i\hat{\mathcal{A}}(\xi)]^{-1} \mathcal{F}(\lambda)\}(x) \]

\[= T\{ \sum_{j=1}^{5} \mathcal{R}_{ij}(\lambda)f_i(x) \}_{j=1}^{5}, \]

where \(\mathcal{R}_{ij}(\lambda) = \mathcal{F}^{-1}\{[\lambda I + i\hat{\mathcal{A}}(\xi)]^{-1} \mathcal{A}_{ij}(\lambda, \xi)\}. \) When \(f = \{f_1, f_2, f_5\} \) where \(f_2 = (f_2, f_3, f_4) \) we shall use the representation as follows:

\[R_0(\lambda)f(x) = T\{R_0, \rho(\lambda)f(x), R_0, \nu(\lambda)f(x), R_0, \theta(\lambda)f(x)\}. \]

Then we shall have the following estimates of \(R_0(\lambda)f \) which is the core of our argument.

Theorem 2.2. Let \(1 < q < \infty \), \(b \) be a positive number and \(X_{q,b}(R^3) \) be the same symbol as in (0.5). Then for any \(f \in X_{q,b}(R^3) \) any \(\lambda \in \{ \lambda \in \mathbb{C}; \text{Re} \lambda \geq 0, 0 < |\lambda| \leq 1 \} \)

\[\| (\frac{d}{d\lambda})^k R_0(\lambda)f \|_{X_q(B_b)} + \| (\frac{d}{d\lambda})^k \text{PR}_0(\lambda)f \|_{2,q,B_b} \]

\[\leq C_{\text{max}}\{1, |\lambda|^{1/2-k}\} \|f\|_{X_q(R^3)}, \]

where \(k \) are integers \(\geq 0 \) and \(C = C(q,b,k) \) is a constant.

Finally in this section, we shall investigate the continuity as \(\lambda \to 0 \) for the operator \(R_0(\lambda) \) and the properties for \(R_0(0) \).

Lemma 2.4. Let \(1 < q < \infty \) and \(b \) be a positive number and let \(f \in X_{q,b}(R^3) \). Then \(T\{R_0(0)f\} \in W^1_{q,\text{loc}}(R^3) \times W^2_{q,\text{loc}}(R^3) \times W^2_{q,\text{loc}}(R^3) \) and

\[\lim_{R \to \infty} R^{-3} \int_{R < |x| < 2R} |R_0(0)f|^q dx = 0. \]

Moreover,

\[\| T\{R_0(\lambda)f - T\{R_0(0)f\} \|_{W^1_{q,\text{loc}}(R^3) \times W^2_{q,\text{loc}}(R^3) \times W^2_{q,\text{loc}}(R^3) \} \to 0 \]
as \(\lambda \to 0 \) and \(\text{Re} \lambda \geq 0 \).

§3. Proof of Theorem A.

First note that by Lemma 2.1 (iii)

\[
det[\lambda + A(\xi)] \neq 0 \quad \text{for} \quad \lambda \in \Sigma' = \{ \lambda \in \mathbb{C}; \ C_1 \text{Re} \lambda + (\text{Im} \lambda)^2 > 0 \}
\]

where \(C_1 \) is a constant depending only on \(\alpha, \beta, \gamma, \kappa, \) and \(\omega \). Combining this with Theorem 1.1 we take the constant \(C \) in the parabolic region \(\Sigma = \{ \lambda \in \mathbb{C}; \ C \text{Re} \lambda + (\text{Im} \lambda)^2 > 0 \} \) so that \(\Sigma \subset \Sigma' \cap \Sigma'' \). In view of Remark 1.4, we only show (0.5). Now we shall construct parametrix to (1.1) in \(\Omega \). Let \(\partial \Omega \subset B_{R_0} \), \(b \) be a fixed constant \(b > R_0 + 3 \) and let \(\Omega_b = \Omega \cap B_b \). Given \(\lambda \in \Sigma \) and \(g \in X_q(\Omega_b) \), let \(T_w \in W^1_{q}(\Omega_b) \times W^2_q(\Omega_b) \times W^2_q(\Omega_b) \) be solutions to the problem:

\[
(\lambda + A)w = g \quad \text{in} \quad \Omega_b,
\]

\[
Pw = 0 \quad \text{on} \quad \partial \Omega_b.
\]

The existence of such \(w \) is guaranteed by Remark 1.4. In terms of \(w \), let us define the operator \(L(\lambda) \) by relations:

\[
(3.1) \quad w = L(\lambda)g = \{L_\rho(\lambda)g, L_v(\lambda)g, L_\theta(\lambda)g\}.
\]

Here and hereafter, for \(f \in X_q(\Omega) \), we put \(f_0(x) = f(x) \) for \(x \in \Omega \) and \(= 0 \) for \(x \in \mathbb{R}^3 \setminus \Omega \). \(\Pi_b f \) stands for the restriction of \(f \) to \(\Omega_b \). By Remark 1.4 and (3.1) we have

\[
(3.2) \quad \|L(\lambda)\Pi_b f\|_{X_q(\Omega_b)} + \|PL(\lambda)\Pi_b f\|_{2,q,\Omega_b} \\
\leq C(q,b,\lambda)\|f\|_{X_q(\Omega)} \quad \text{for any} \quad f \in X_q(\Omega).
\]

Let \(R_0(\lambda), R_0,\rho(\lambda), R_0,v(\lambda) \) and \(R_0,\theta(\lambda) \) be the same symbol as in (2.3) and (2.4). Since \(\det[\lambda + A(\xi)] \neq 0 \) whenever \(\xi \in \mathbb{R}^3 \) and \(\lambda \in \Sigma \), by Theorem 7.9.5 of [6], we see that

\[
(3.3) \quad \|R_0(\lambda)f_0\|_{X_q(\mathbb{R}^3)} + \|PR_0(\lambda)f_0\|_{2,q,\mathbb{R}^3}
\]
\[\leq C(q, \lambda) \|f\|_{X_q(\Omega)} \text{ for any } f \in X_q(\Omega). \]

Let \(\phi \in C^\infty(\mathbb{R}^3) \) such that \(\phi(x) = 0 \) for \(|x| \leq b - 2 \) and = 1 for \(|x| \geq b - 1 \). We introduce the operator \(\mathfrak{Q}_1(\lambda) \) by the relations:

\[(3.4) \quad \mathfrak{Q}_1(\lambda)f = T\{\mathfrak{Q}_1, \rho(\lambda)f, \mathfrak{Q}_1, \nu(\lambda)f, \mathfrak{Q}_1, \theta(\lambda)f\} \]

\[:= \phi R_0(\lambda)(f_0) + (1-\phi)L_1(\lambda)\pi_b f \text{ for any } f \in X_q(\Omega), \]

Then by (3.2) and (3.3) we have

\[(3.5) \quad T\mathfrak{Q}_1(\lambda)f \in W^1_q(\Omega) \times W^2_q(\Omega) \times W^2_q(\Omega) \text{ for any } f \in X_q(\Omega), \]

\[(3.6) \quad \|\mathfrak{Q}_1(\lambda)f\|_{X_q(\Omega)} + \|\mathfrak{P}_1(\lambda)f\|_{2,q,\Omega} \leq C(q, \lambda, b) \|f\|_{X_q(\Omega)} \text{ for any } f \in X_q(\Omega), \]

and

\[(3.7a) \quad (\lambda+\delta)\mathfrak{Q}_1(\lambda)f = f + \mathbb{V}(\lambda)f \text{ in } \Omega, \]

\[(3.7b) \quad \mathfrak{P}_1(\lambda)f = 0 \text{ on } \partial \Omega, \]

where \(\mathbb{V}(\lambda)f = T\{V_\rho(\lambda)f, V_\nu(\lambda)f, V(\lambda)f\} \) and

\[(3.8a) \quad V_\rho(\lambda)f = \gamma \nabla \phi[R_0, \nu(\lambda)(f_0) - L_\nu(\lambda)\pi_b f], \]

\[(3.8b) \quad V_\nu(\lambda)f = -\alpha[\Delta \phi + 2(\partial_j \phi) \partial_j] [R_0, \nu(\lambda)(f_0) - L_\nu(\lambda)\pi_b f] \]

\[- \beta \nabla \{\partial_j \phi[R_0, \nu(\lambda)(f_0) - L_\nu(\lambda)\pi_b f] \} \]

\[- \beta \nabla \{\nabla [R_0, \nu(\lambda)(f_0) - L_\nu(\lambda)\pi_b f] \} \]

\[+ \gamma \nabla [R_0, \rho(\lambda)(f_0) - L_\rho(\lambda)\pi_b f] \]

\[+ \alpha \partial_j \phi[R_0, \rho(\lambda)(f_0) - L_\rho(\lambda)\pi_b f] \}

\[+ \omega \partial_j \phi[R_0, \nu(\lambda)(f_0) - L_\nu(\lambda)\pi_b f] \}

\[\text{for any } f \in X_q(\Omega). \]

Our task is to prove that \(I + \mathbb{V}(\lambda) \) has the bounded inverse from \(X_q(\Omega) \) onto itself. It follows from (3.2), (3.3) and (3.8) that \(T\mathbb{V}(\lambda) \in \mathfrak{B}(X_q(\Omega), W^2_q(\Omega) \times W^1_q(\Omega) \times W^1_q(\Omega)) \) for each \(\lambda \in \Sigma. \) Since \(\text{supp} \mathbb{V}(\lambda)f \subset D_{b-1} = \{x \in \mathbb{R}^3; b-2 < |x| < b-1\} \), by Rellich's compactness theorem \(\mathbb{V}(\lambda) \) is a compact operator from \(X_q(\Omega) \) onto itself. Thus by Fredholm's
alternative theorem, it suffices to show that $I + \mathcal{V}(\lambda)$ is injective in $X_q(\Omega)$ in order to prove that $I + \mathcal{V}(\lambda)$ has the bounded inverse. Let $(I + \mathcal{V}(\lambda))f = 0$ in Ω, $f \in X_q(\Omega)$. Then it follows from (3.5), (3.7) and Ker$(\lambda + \mathcal{A}) = 0$ that

$$Q_1(\lambda)f = 0 \text{ in } \Omega,$$
$$PQ_1(\lambda)f = 0 \text{ on } \partial \Omega,$$

which together with (3.4) and implies that

(3.9a) $\quad R_0(\lambda)(f_0) = 0 \text{ for } |x| \geq b - 1.$

(3.9b) $\quad L(\lambda)\pi_b f = 0 \text{ for } |x| \leq b - 2.$

Put $z = \pi_b R_0(\lambda)(f_0) - w$ where $w = L(\lambda)\pi_b f$ in Ω_b and $= 0$ in $R^3 \setminus \Omega$. By (3.9b) we know that $T_w \in \mathcal{W}_q^1(B_b) \times \mathcal{W}_q^2(B_b)$ and $(\lambda + \mathcal{A})w = \pi_b^0 f_0 \text{ in } B_b$, $Pw = 0$ on $|x| = b$,

where $\pi_b^0 f_0$ stands for the restriction of f_0 to B_b, and hence we see that

$$(\lambda + \mathcal{A})z = 0 \text{ in } B_b, \quad Pu = 0 \text{ on } |x| = b,$$

which with the help of Theorem 1.1 means that $z = 0$ in B_b. As a results, we have

(3.10) $\quad R_0(\lambda)(f_0) = L(\lambda)\pi_b f \text{ in } \Omega_b.$

Combining (3.4) and (3.10), we see that

(3.11) $\quad R_0(\lambda)(f_0) = \varphi[R_0(\lambda)(f_0) - L(\lambda)\pi_b f] + R_0(\lambda)(f_0)$

$$= Q_1(\lambda)f = 0 \text{ in } \Omega_b.$$

It follows from (3.9) and (3.11) that $R_0(\lambda)(f_0) = 0$ in Ω, which together with (2.1) implies that $f_0 = f = 0$ in Ω. Therefore, we have prove that $(I + \mathcal{V}(\lambda))$ has the bounded inverse $(I + \mathcal{V}(\lambda))^{-1}$ from $X_q(\Omega)$ onto itself. Given $f \in X_q(\Omega)$, if we put $u = Q_1(\lambda)(I + \mathcal{V}(\lambda))^{-1}$, by (3.7) and (3.6) we see that $(\lambda + \mathcal{A})u = f$ in $X_q(\Omega)$ and $u \in \mathcal{O}(\mathcal{A})$, which means that the inverse $(\lambda + \mathcal{A})^{-1}$ of $(\lambda + \mathcal{A})$ exists, and it is bounded, that is
by (3.6)
\[
\| (\lambda + A)^{-1} f \|_{X_q(\Omega)} + \| P(\lambda + A)^{-1} f \|_{2,q,\Omega} \\
\leq C(q,b,\lambda) \| (I + \nabla(\lambda))^{-1} \mathcal{L}(X_q(\Omega)) \| f \|_{X_q(\Omega)}
\]
for any \(f \in X_q(\Omega) \), which completes the proof.

§4. Behaviour of \((\lambda + A)^{-1}\) near \(\lambda = 0 \)

In this section we shall discuss behaviour of \((\lambda + A)^{-1}\) near \(\lambda = 0 \).

Our goal of this section is to prove the following theorem. Set
\[
Y_{q,b}(\Omega) = \{ f \in Y_q(\Omega_b); f(x) = 0 \text{ for } x \in \mathbb{R}^3 \setminus B_b \}.
\]

Theorem 4.1. Let \(1 < q < \infty \), \(b_0 \) be a number such that \(B_{b_0} \supset \mathbb{R}^3 \setminus \Omega \) and let \(b > b_0 \). Put \(D_\varepsilon = \{ \lambda \in C; \text{Re} \lambda > 0, 0 < |\lambda| < \varepsilon \} \), \(\mathcal{H} = \mathcal{H}(Y_{q,b}(\Omega); \Omega) \) and \(\mathcal{D}(D_\varepsilon; \mathcal{H}) \) is the set of all \(\mathcal{H} \)-valued holomorphic functions in \(D_\varepsilon \). Then, there exists a positive number \(\varepsilon \) and \(\mathbb{R}(\chi) \in \mathcal{D}(D_\varepsilon; \mathcal{H}) \) such that \(\mathbb{R}(\chi)f = (\lambda + A)^{-1}f \) and
\[
\| (\frac{d}{d\lambda})^k \mathbb{R}(\chi)f \|_{X_q(\Omega_b)} + \| (\frac{d}{d\lambda})^k \mathbb{P}(\chi)f \|_{2,q,\Omega_b} \\
\leq C(q,b,k,\varepsilon) \max\{1,|\lambda|^{1/2-k}\} \| f \|_{X_q(\Omega)}, \ k = 0,1,2.
\]
for any \(\lambda \in D_\varepsilon \) and \(f \in Y_{q,b}(\Omega) \).

In Theorem 4.1, in view of proof of Remark 1.4, taking \(\psi \in C^\infty(\Omega_b) \) such that \(\int_{\Omega_b} \psi(x)dx = 1 \), we have the following corollary:

Corollary 4.2. Let \(1 < q < \infty \), \(b_0 \) be a number such that \(B_{b_0} \supset \mathbb{R}^3 \setminus \Omega \) and let \(b > b_0 \). Put \(\mathcal{H} = \mathcal{H}(X_{q,b}(\Omega); \Omega) \). Then, there exists a positive number \(\varepsilon \) and \(\mathbb{R}(\chi) \in \mathcal{D}(D_\varepsilon; \mathcal{H}) \) such that \(\mathbb{R}(\chi)f = (\lambda + A)^{-1}f \) and
\[
\| (\frac{d}{d\lambda})^k \mathbb{R}(\chi)f \|_{X_q(\Omega_b)} + \| (\frac{d}{d\lambda})^k \mathbb{P}(\chi)f \|_{2,q,\Omega_b} \\
\leq C(q,b,k,\varepsilon) \max\{1,|\lambda|^{1/2-k}\} \| f \|_{X_q(\Omega)} + |\lambda|^{-1} \| f \|_{q,\Omega}
\]
for \(k = 0,1,2 \), any \(\lambda \in D_\varepsilon \) and \(f = \{ f_1,f_2,f_3 \} \in X_{q,b}(\Omega) \). Moreover,
$$R(\lambda) = R(\lambda)N_1 + \frac{1}{\lambda}R(\lambda)N_2 + \frac{1}{\lambda}N_3$$

where $N_j = N_j(\psi, \Omega_\beta)$ $j = 1, 2, 3$, are the same symbols as in (1.2).

To prove Theorem 4.1, in the same way to the proof of Theorem A we shall construct a parametrix near $\lambda = 0$. The key in our argument is the following proposition concerning the uniqueness, which was proved by Iwashita [9].

Proposition 4.3. Let $1 < q < \infty$ and let $W^m_{q,E}(\Omega) = \{u; \text{there exists a } U \in \tilde{W}^m_{q,loc}(R^3) \text{ such that } u = U \text{ in } \Omega\}$. Suppose that $u \in W^1_{q,E}(\Omega) \times W^2_{q,E}(\Omega) \times W^2_{q,E}(\Omega)$ satisfies the homogeneous equation:

$$Au = 0 \text{ in } \Omega, \imath u = 0 \text{ in } \partial \Omega$$

and satisfies

$$\lim_{R \to \infty} \frac{1}{R^3} \int_{|x| < 2R} |u(x)|^q \, dx = 0.$$

Then $\rho = 0, \nu = 0$ and $\theta = 0$ in Ω.

§5. Proof of Theorem B

In this section, we shall prove Theorem B. To do this we prepare the following lemma, which was proved by Shibata. (see Theorem 3.2 and 3.7 of [18])

Lemma 5.1. Let X be a Banach space with norm $\|\cdot\|_X$. Let $f(\tau)$ be a function of $C^\infty(R-\{0\};X)$ such that $f(\tau) = 0, |\tau| \geq a$ with some $a > 0$. Assume that there exists a constant $C(f)$ depending on f such that for any $0 < |\tau| \leq a$,

$$|\left(\frac{d}{d\tau}\right)^k f(\tau)|_X \leq C(f)|\tau|^{-1/2-k}, \quad k = 0, 1.$$

Put $g(t) = \int_{-\infty}^{\infty} f(\tau)e^{-i\tau t} \, d\tau$. Then

$$|g(t)|_X \leq C(1+t)^{-1/2}C(f).$$

Now we shall prove Theorem B. In view of the facts that when $0 < \leq 1$ by Theorem A we have
$\|\partial^M_t e^{-t\lambda} u\|_{X_q(\Omega)} + \|\partial^M_t e^{-t\lambda} u\|_{2,q,\Omega} \leq C \|(1+\lambda)^{M+N} e^{-t\lambda} u\|_{X_q(\Omega)} \leq C t^{-N-M} \|u\|_{X_q(\Omega)}$

for any $u \in X_q(\Omega)$ and any integers $N \geq 1$, $M \geq 0$, we only to show the case $t \geq 1$. Note that by Corollary 7.5 of [16, Chapter 1] we can write

(5.1) \[e^{-t\lambda} u = \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} e^{t\lambda} (\lambda+\lambda)^{-1} u d\lambda \]

for all $u \in D(\lambda^2)$, because

(5.2) \[\|\frac{d}{d\lambda} (\lambda+\lambda)^{-1} u\|_{X_q(\Omega)} \leq \frac{C(\beta)}{1+|\lambda|^2} \|u\|_{X_q(\Omega)} \text{ for any Re} \lambda \geq \beta \]

by Theorem A. Since $D(\lambda^2)$ is dense in $X_q(\Omega)$, the equation (5.1) holds in $X_q(\Omega)$.

First we shall consider the case $u \in Y_{q,b}(\Omega)$. Let $b > b_0$ and let $\psi \in C_0^\infty(\mathbb{R}^3)$ such that $\psi(x) = 1$ for $|x| \leq b$ and $= 0$ for $|x| \geq b + 1$. Since we can move the path in the following integral to the imaginary axis by Theorem 4.1, (5.1) and (5.2), we have

\[\partial^\alpha_x \psi e^{-t\lambda} u = \frac{1}{2\pi i} \partial^\alpha_x \left\{ \int_{\beta-i\infty}^{\beta+i\infty} e^{t\lambda} \frac{d}{d\lambda} (\lambda+\lambda)^{-1} u d\lambda \right\} \]

\[= \frac{1}{2\pi i} \partial^\alpha_x \left\{ \int_{-\infty}^{\infty} e^{its} \frac{d}{ds} (is+\lambda)^{-1} u d\right\} \]

for any $u \in Y_{q,b}(\Omega)$ and multi-index $\alpha = (\alpha_1, \alpha_2, \alpha_3)$: $\alpha_2 = (\alpha_2, 1', \alpha_2, 2', \alpha_2, 3)$, $\alpha_1 \leq 1$, $|\alpha_2| \leq 2$ and $\alpha_3 \leq 2$. Taking $\eta(s) \in C_0^\infty(\mathbb{R})$ so that $\eta(s) = 1$ for $|s| \leq 1/4$ and $= 0$ for $|s| \geq 1/2$ we have

(5.3) \[\partial^\alpha_x \psi e^{-t\lambda} u = J_0(t) u + J_1(t) u \]

where

\[J_0(t) u = \frac{1}{2\pi i} \partial^\alpha_x (\psi \int_{-\infty}^{\infty} e^{its} \eta(s) \frac{d}{ds} (is+\lambda)^{-1} u d\right) \]
\[J_\infty(t)u = \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} e^{its} (1-\eta(s)) \frac{d}{ds} (is+A)^{-1}uds. \]

By Theorem A we have

\[\| \partial_\chi^{\alpha} (1-\eta(s)) (\frac{d}{ds})^N (is+A)^{-1}u \|_{\Omega, q} \leq (1-\eta(s)) \left\{ \| (is+A)^{-N}u \|_{\mathcal{X}(\Omega)} + \| P(is+A)^{-N-1}u \|_{2, q, \Omega} \right\} \]

\[\leq C(N) (1+|s|)^{-N} \| u \|_{\mathcal{X}(\Omega)}, \]

and hence by the relation \(\frac{1}{t} \frac{d}{dt} e^{t\lambda} = e^{t\lambda} \), we have

\[\| \partial_t^M J_\infty(t)u \|_{\Omega, q} \leq C(N, M, \alpha) t^{-N} \| u \|_{\mathcal{X}(\Omega)} \]

for any integers \(N \geq 2, M \geq 0 \). On the other hand, noting that

\[\partial_t^M J_0(t)f = \frac{1}{2\pi i} \sum_{n=0}^{M} \frac{\partial^M}{n!} \partial^{M-n} \partial_\chi^{\alpha} \left\{ \int_{-\infty}^{\infty} e^{ist} \eta(s)(is) \frac{d}{ds} R(is)fds \right\} \]

\[= t^{-(M+1)} \sum_{n=0}^{M} c(n) \partial_\chi^{\alpha} \left\{ \int_{-\infty}^{\infty} e^{ist} \frac{d}{ds} R(is)f \eta(s)(is) \frac{d}{ds} R(is)f \right\}, \]

it follows from Theorem 4.1 and Lemma 5.1 that

\[\| \partial_t^M J_0(t)u \|_{\Omega, q} \leq C(M, b, q, (1+t)^{-M+3/2}) \| u \|_{\mathcal{X}(\Omega)} \]

for any \(u \in \mathcal{Y}_{b, q}(\Omega) \), integer \(M \geq 0 \) and \(t \geq 1 \). Combining (5.3), (5.5) and (5.6) we have for any \(u \in \mathcal{Y}_{b, q}(\Omega) \), integer \(M \geq 0 \) and \(t \geq 1 \)

\[\| \partial_t^M e^{-tA}u \|_{\mathcal{Y}_{b, q}(\Omega)} + \| \partial_t^M e^{-tA}u \|_{2, q, \Omega} \leq C(1+t)^{-3/2-M} \| u \|_{\mathcal{Y}_{b, q}(\Omega)}. \]

Next we shall consider the case \(u \in \mathcal{X}_{b, q}(\Omega) \). Taking \(\phi \in C_0^\infty(\Omega_b) \), such that \(\int_{\Omega_b} \phi(x)dx = 1 \), in view of Remark 1.4, we have

\[(\lambda+A)^{-1}u = (\lambda+A)^{-1}N_1 u + \frac{1}{\lambda} (\lambda+A)^{-1}N_2 u + \frac{1}{\lambda^3} N_3 u \]

for \(u \in \mathcal{X}_{b, q}(\Omega) \) where \(N_j = N_j(\phi, \Omega_b) \) \((j = 1, 2, 3)\) be the same symbol as in (1.2).

Combining this and (5.1), we have

\[e^{-tA}u = \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} e^{ts} (\lambda+A)^{-1}N_1 u d\lambda \]

\[+ \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} e^{ts} (\lambda+A)^{-1}N_2 u d\lambda. \]
Putting $T_1(b, \phi, t)u = e^{-tA}N_1u$ and $T_2(b, \phi, t)u = \int_0^t e^{-sA}N_2uds + N_3u,$

since \(\frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} \frac{1}{\lambda} e^{\lambda t} \lambda d\lambda = u \) for any $u \in X_q(\Omega),$ and since by Theorem 7.4 of [16, Chapter 1] we have

\[
\int_0^t e^{-sA}uds = \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} e^{\lambda t} \lambda d\lambda \quad \text{for } u \in \mathcal{D}(\mathcal{A}) \text{ and } t > 0,
\]

it follows from (5.1) and (5.8) that the relation (0.6) holds.

Moreover, noting that $N_1u, N_2u \in Y_{q,b}(\Omega),$ since by (5.1) and (5.8) we have

\[
(5.9) \quad \partial_t e^{-tA}u = \partial_t \left\{ \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} e^{\lambda t} (\lambda + A)^{-1} u \lambda d\lambda \right\} + \frac{-1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} e^{\lambda t} (\lambda + A)^{-1} N_2u \lambda d\lambda,
\]

it follows from (5.7), (5.8) and (5.9) that the estimates (0.7) and (0.8) hold. This completes the proof of Theorem B.

References
4. Deckelnick, K., L^2-decay for the compressible Navier-Stokes equations in unbounded domains, Commun. in Partial Differential
Equations, 18(9&10), 1445-1476 1993.

