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GLOBAL SOLUTIONS TO THE SEMILINEAR WAVE
EQUATION FOR LARGE SPACE DIMENSIONS

VLADIMIR GEORGIEV

Consider the semilinear wave equation
Ou = F(u), (1)

where F(u) = O(Ju|*) near |u] = 0 and X > 1. Here and below O denotes the d’Alembertian
on R™1.

For this semilinear wave equation W.Strauss proposed in [17] the conjecture that the
existence of global solution of the corresponding Cauchy problem with small initial data
depends essentially on a critical value Ag(n) for the non linearity, namely Ao(n) is the

positive root of the equation
(n=—1X=(n+1)A-2=0. ' (2)

More precisely, for the subcritical case ( 1 < A < Xg(n)) the conjecture asserts that
the solution with small initial data blows up in finite time, while an existence result is
expected for the supercritical case ( A > Ao(n)) .

Here below we shall make a brief review of the results concerning this conjecture.

The case n = 3 was studied by F.John in the pioneer work [6]. The critical value for
this case is Xo(3) =1 + V2.

For n = 2 a proof of the conjecture was given by R.Glassey ([4], [5]). A blow-up result
for arbitrary space dimensions when 1 < A < Ao(n) was established by T.Sideris [16].

The critical values A = Ag(n) were studied by J.Schaeffer in [15] for n = 2,3. A
simplified proof was found by H.Takamura [24]. '

Another interesting effect is the influence of the decay rate of the initial data on the

existence of global solutions. In this case the solution might blow-up in finite time when
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the initial data decay very slowly at infinity even in the supercritical case when A > Ao(n).
For the case n = 3 this effect was established by F.Asakura [3] for the supercritical case.
The critical cases for n = 2,3 were studied by K.Kubota [13] , K.Tsutaya [25], [26], [27],
R.Agemi and H.Takamura [2]. For the case n > 4 and supercritical non linearity the
blow-up result for slowly decaying initial data is due to H.Takamura [23].

On the other hand, the existence part of the conjecture of W.Strauss for n > 3 is also
very actively studied in the recent years.

Y. Zhou [28] has found a complete answer for n = 4 by using suitable weighted Sobolev
estimates and the method developed by S.Klainerman [7], [8], [9] for proving the existence
of small amplitude solutions.

The existence of a global solution for the case A = (n +3)/(n — 1) was established by
W.Strauss [19] by the aid of the conformal methods and the classical Strichartz inequality
[20], [21], [22].

Another partial answer was given by R.Agemi, K.Kubota, H. Takamura in (1] for
a special class of integral non linearity in (1). The approach in this work follows the
approach of F.John. '

A complete proof of the conjecture of W.Strauss for spherically sy mmetnc initial data
was found by H.Kubo [12] (see also [10], {11]).

By using different estimates H.Lindblad and C.Sogge [14] obtained a similar result
as well as the existence of solutions in the supercritical case, non spheucallv symmetric
initial data and space dimensions n < 8.

Our purpose in this talk shall be the announce of a result concerning the Cauchy

problem
Ou = F(u),
u(0,z)=¢f , Owu(0,z)=eg, (3)
where f.g are compactly supported smooth functions such that

suppf Usuppg C {|z] < R}, ‘ ()

while ¢ is a sufficiently small positive number. For the nonlinear function F'(u) we shall
assume that F(u) € C° near u = 0 and for some A > 1 satisfies

|F(u)] < Clul®
|F(u) = F(v)] < Clu = vl(jul*" + o]*7") - (3)

Ut

near u,v = 0.
Our goal shall be to examine the existence of global solution to (3) for

n-+3
n—1°

where Ag(n) is the positive root of (2). For this case we have the following
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Theorem 1 Suppose the assumptions (4) , (5) and (6) are fulfilled with Ao(n) being the
positive root of the equation ‘ .

(n—=1D N =n+1A-2=0. (7)

Then there exists €9 > 0 so that for 0 < € < &g the Cauchy problem (3) admits a global
solution.

The solution belongs to a Banach space of type
+1
u € LY 5(R}™),
where L? ;(R7}™') denotes the Banach space of all measurable functions with finite norm
B
”TiT—-u“Lq(Ri“)'

Here and below 7+ = 14|t £|z|| are the weights associated with the characteristic surfaces
of the wave equation.

The result of the above theorem shows that the conjecture of W.Strauss is valid for
arbitrary space dimensions n > 2 even in the case of non spherically symmetric initial
data.

The main idea to establish the above result is the application of a weighted estimate

for the inhomogeneous wave equation
Ou = F, (8)

with zero initial data. For simplicity we shall assume that the supports of v and [ lie in
the light cone, that is
suppF(t,z) C {|z| <t + R}. (9)

The key to prove Theorem 1 is the following weighted estimate.

Theorem 2 Suppose 1 < p,q < oo satisfy

1 1 1 1
-< = -+ -<1,
qg P q9 P
-3 1
z i (10)
2 g P
while the parameters a, 8,7, 6 satisfy
< n—1 n
a — —
2 q’
n—1 n+1 n+l n 1 n—-1 n
- <B=7- +--=< - -
2p 2q 2 ' p ¢ 2 q

§>1—-—. (11)
p
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Then the solution u satisfies the estimate.
HTinUHLq(Rg“) < CllT 7 Fll pomatyys (12)
where 7+ = 1 + |t £ ||| and R} = {(t,z) e R™' : 1 > 0}.

This estimate can be considered as a generalization of the Strichartz estimate and the
estimates used by F.John in [6].

The author is grateful to Professors R.Agemi, I& Kubota, Y. Shibata, H. Takamma
K.Tsutaya, and H. Kubo for the important discussions and the supp01t dunng the prepa-

ration of the work.
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