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Asymptotic behaviors of radially symmetric solutions of Cu = |ul|?

for super critical values p in high dimensions

Hipeo KuBo AND K6Jj1 KuBoTA

(A BA . Abhe £ 1)

1. Introduction
We study asymptotic behaviors as ¢ — £o0o of radially symmetric solutions of the nonlinear

wave equation
(1.1) uyg —Au = F(u) in zeR" teR,

where F(u) = |u|? or F(u) = |u|P"'u with p > 1 and n 2 2.

Let po(n) be the positive root of the quadratic equation in p:

n—1 n+1

p—1=0.

Note that po(n) is strictly decreasing with respect to n and po(4) =2. If 1 < p < po(n), it is
known that the Cauchy problem for (1.1) with initial data prescribed on ¢ = 0 does not admit
global (in time) solutions, provided the initial data are chosen appropriately, even if they are
sufficiently small. (See [6], [8] and [19]). The same is true for p = po(n) f n =2 or n = 3.
(See [18]).

On the other hand, the case where p > pg(n) seems to be more complicated. When
2 S n £4, it is known that the problem admits a global solution for small initial data. (See
[7], [8] and [24]). When n 2 5, for p 2 (n + 3)/(n — 1) a global weak solution of the problem
obtained by [13] and [20]. (See also [3], [4], [11] and [12]). Recentely, the case where p is
between pg(n) and (n + 3)/(n — 1) is treated by [5] and [14], independently.

Moreover, when p > po(n) and either n = 2 or n = 3, it has been shown that the scattering

operator for (1.1) exists on a dense set of a neighborhood of 0 in the energy space. (See {10],
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[17] and [23]). Namely, let u_(z,t) be the solution of the homogeneous wave equation
(1.3) - ugy —Au=0 in zeR"teR,
with small initial data
u(z,0) = f(:c), ui(z,0) = g(z) for z € R".

Then there exists a solution u(z,t) of (1.1) such that ||u(t) —u_(t)|lc — 0 as t — —oo, where

1/2
(1.4) fetole ={ [ avotani + e tP)ic

and there exists another solution uy (2, 1) of (1.3) such that ||u(t)—u(t)|lc — 0ast — co. The
analogous results have been obtained also for the high dimensional case, provided p > pi(n),

where p;(n) is the largest root of the quadratic equation in p:
(n? —n)p* —(n* +3n—-2)p+2=0.

(See [13], [15], [16], and [20]). However here is a gap between po(n) and pi(n). Indeed, since

the left-hand-side of the above quadratic equation is rewritten as

it is easy to see that po(n) < p1(n).
The purpose of this note is to search the asymptotic behaviors of radially symmetric solu-

tions of (1.1), which guarantee the existence of the scattering operator, for p > po(n) in high

dimensions n 2 5.

2. Statements of main results
Throughout this section, we assume n 2 5 (uhless stated otherwise). First we shall consider
the Cauchy problem for the homogeneous wave equation:

n—1
u, =0 in €,

(21)0 Ugt — Upy —

(2.1); u(r,0) = f(r), wu(r,0)=g(r) for r >0,

where Q = {(r,t) € R?; r > 0} and u(r,t) a real valued function. Then we have
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Theorem 1. Assume f € C*([0,00)) and g € C*([0, 00)) satisfy

1
(2.2) FONEY T+ D AU 4 gD ()]) S efr) ™7 for v >0,

=0
where ¢ and & are positive numbers and (r) = V1 + r2. Here if n is even number, we further
assume & < (n — 1)/2. Then (2.1) admits uniquely a weak solution u(r,t) € C1() such that
for (r,t) € Q and |a| £ 1 we have

(2.3) 1D u(r,t)] £ Cer' =) T g (),

where we have set m = [(n — 2)/2] and

U(r,t) = (r+ |t|)_X(")<7~ e

with
(n) 1/2 if n is even,
L1 ey
X 1 if n is odd,

and C is a constant depending only on m and k.
Next we shall consider the nonlinear wave equation

n-—1
(24) Ut — Upp —

u, = F(u) in Q,

-

where F(u) = |ul? or F(u) = |u|’"'u. Here we assume

(2.5) po(n) <p<(n+3)/(n—-1).

We shall introduce a function space X, in which we will look for solutions of (2.4), defined by
X = {u(r,t) € C%(Q): Dyu(r,t) € C°(Q), ||ull < oo},

and

lull = sup {(Ju(r,)r™ " (r) + [Deulr,O)[r™)T 7 (r, [E)}
(r,t)EQ

where U is the same function as in (2.3). As for the parameter k, we assume

1 1
< k and Pt nt <k S

2. -
(2.6) p— 5 4,

N —
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where we have set
n—1 n+1

g=(1+®(n,p))/p= 5P~

with ®(n,p) in (1.2). Note that there exist really numbers « satisfying (2.6) for p > po(n),

because

p+1 n+1l
®(np)=(p=Dg=(C—7 = =57} >0 for p>po(n).
We are now in a position to state the main theore‘n‘i in this note. Let u_(r,t) be the solution

of (2.1) which is obtained in Theorem 1. Note that u_ € X and
(2.7) flu_|| £ Ce for any < > 0.

Then we have

Theorem 2. (Main theorem). Assume conditions (2.2), (2.5) and (2.6) hold. - Then
there is positive constant ¢y (depending only on p. n and k) such that, if 0 < ¢ < &.
there exists uniquely a weak solution u(r,t) of the nonlinear wave equation (2.4) such that

weCHQ)NX,
(2.7) | Jull = 2fju—||

and for (r,t) € Q and |a] £ 1 we have

(2.8)- D2 (u(rt) — u(r, )] < CllufPr' =1l ) el )
and

(2.9)- lu(t) = u-()lle < Clull?(®)™" if + <0,

where || - || is defined by (1.4) and we have set

¢ = min{g, x(n)p + pr — 1},

and C is a constant depending only on p, n and k.
Moreover there exists uniquely a weak solution u (r,t) of (2.1)y which belongs to C*(Q2)NX.
such that for (r,t) € Q and |a| £ 1 we have

(2.8)+ 1D (u(r,t) — us (r, )] £ ClluflPrt =1l () =1+l g (r, 1)
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and
(2.9); ) - ws @l SOl i 120

Remarks. 1) If n is odd, in Theorems 1 and 2, one can replace u € C1(Q) by u € C*(Q).
Moreover in (2.6) we can replace k > 1/2 by « > 0. In this case, we interpret (2.9)+ as
follows. When x > 1/2p, (2.9)+ is still valid. When 0 < x < 1/2p, it holds with § = . (See

[9])-

2) For n 2 2, consider the following Cauchy problem

n

u(r,0) =0, u(r,0)=g(r) for r>0.

~1
(2.10) { Upt = try — ——up = F(u) in >0, ¢>0,

It is known that, if g(r) 2 Mr~* for r 2 1 with some positive constants M,y and p <
(p+1)/(p — 1), then (2.10) does not admit global solutions. (See [1], [2], [21] and [22]).
Therefore condition (2.6) is partially necessary to obtain Theorem 2.

3) One can also show that the Cauchy problem for the nonlinear wave equation (2.4)

admits a unique global solution, provided the hypotheses of Theorems 1 and 2 are fulfilled.

In the proof of Theorem 1, the following lemma plays a key role. Moreover Theorem 2 is
obtained by considering the assosiated integral equation with the differntial equation (2.4).

So the lemma below is very essential in our work.

Lemma 3. Let g € C°((0,00)) and
g(r)=0(r"™"1) asr]0.

Forr >0 andt 2 0 we define a function ©(g) as follows.
(1) nisodd:n=2m+3(m=1,2,---).

t+r
O(g)(rt) = / g(VE (A7 1),

[t—r|

where we have set

K(\rt) = 7’2*n/\2"‘+1Hm(/\,7*,t),
V0 =lim 2\(n—3)/2
Hm()‘y-rvt) - (ﬁﬁ) (7" - ()‘ - t) ) .
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(2) niseven:n=2m+2(m=1,2,---).

t+r

‘ max(t—r,0)
ot = [ gE x| GNEZ (A, )dA,
N 0 v

[t—r|

where we have set
t-H" m(ﬂ, r, t)

A /PP —/\2

t—l—-r ( T t)

Y v

Ki(\rt)= p2—n)\2mtl

I{Z(/\, r, f) = 7-2—"/\2771-{-1

and
H,(p,r t) = (_8__*_1.)"”(,,2 —(p=t)2)n=3)/2,
LA a/) 2p )

And we extend ©(g)(r,t) as an odd function with respect to t. Then O(g) € CO(Q) and for
each bounded subset B C {2 we have |

©(g)(r,t)| < Cp r™™ for (r,t) € B.

Moreover, if we set u(z,t) = O(g)(|z|,t), then u(-,t) € C°(R; LIZOC(R")) and u is a weak

solution of the Cauchy problem

{ Uy — ADu =0 in R"X(O,oo’),’
u(z,0) =0, u(z,0) =cpg(lz|) for z€ R

in the sense of disribution, where

{ 2 D(25+) if n is odd,
" V7 T(21) if n is even.

Furthermore, if g € C*((0,00)) and for j = 0,1
g(j)(r) = ()(1"_'"'_-7) as r | 0,
then O(g) € C'(Q) and for each bounded subset B C § we have

|D2,0(g)(r;t)| < Cp =™l for (r,t) € B and |a| £ 1.



94

H. KUBO AND K. KUBOTA

REFERENCES

Agemi R. and Takamura H., The lifespan of classical solutions to nonlinear wave equations in two
space dimensions, Hokkaido Math. J. 21 (1992), 517-542.

Asakura F., Existence of a global solution to a semi-linear wave equation with slowly decreasing
initial data in three space dimensions, Comm. in P.D.E. 11 (1986), 1459-1487.

Choquet-Bruhat Y., Global existence for solutions of Ou = A|u|P, J. Diff. Eq. 82 (1989), 98-108.
Christodoulou D., Global solutions of nonlinear hyperbolic equations for small initial data, C.P.A-M.
39 (1986), 267-282. :

Georiev V., Weighted estimate for the wave equation, preprint.

Glassey R.T., Finite-time blow-up for solutions of nonlinear wave equations, Math. Z. 177 (1981),
323-340. _

Glassey R.T., Ezistence in the large for Ou = F(u) in two space dimensions, Math. Z. 178 (1981),
233-261.

John F., Blow-up of solutions of nonlinear wave equations in -three space dimensions |
Manuscripta Math. 28 (1979), 235-268. ;

Kubo H. and Kubota K., Asymptotic behaviors of radially symmetric solutions of Ou = |u|? for
super critical values p in odd space dimensions, Hokkaido Math. J. 24 (1995), 287-336.

Kubota K. and Mochizuki K., On small data scatiering for 2-dimensional semilinear wave equa-
tions, Hokkaido Math. J. 22 (1993), 79-97.

Li Ta-tsien and Yun-Mei, Initial value problems for nonlinear wave equations, Comm. in P.D.E. 13
(1988), 383-422.

Li Ta-tsien and Yu-Xin, Life-span of classical solutions to fully nonlinear wave equations, Comm.
in P.D.E. 16 (1991), 909-940.

Lindblad H. and Sogge C.D., On exmistence and scattering with minimal regularity for semilinear
wave equations, J. Funct. Anal. 130 (1995), 357-426.

Lindblad H. and Sogge C.D., Long-time existence for small amplitude semilinear wave equations,
preprint.

Mochizuki K. and Motai T., The scattering theory for the nonlinear wave equation with small data,
J. Math. Kyoto Univ. 25 (1985), 703-715.

Mochizuki K. and Motai T., The scattering theory for the nonlinear wave equation with small data,
II, Publ. RIMS, Kyoto Univ. 23 (1987), 771-790.

Pecher H., Scattering for semilinear wave equations with small data in three space dimensions,
Math. Z. 198 (1988), 277-289.

Schaeffer J., The equation uyy — Au = |u|? for the critical value of p, Proc. Roy. Soc. Edinburgh
101 A (1985), 31-44.

Sideris T.C., Nonexistence of global solutions to semilinear wave equations in high dimensions, J.
Diff. Eq. 52 (1984), 378-406.

Strauss W.A., Nonlinear scattering theory at low energy, J. Funct. Analysis 41 (1981), 110-133.
Takamura H., Blow-up for semilinear wave equations with slowly decaying data in high dimensions,
Differential and Integral Equations 8 (1995), 647-661.

Tsutaya K., Global existence theorem for semilinear wave equations with non-compact data in two
space dimensions, J. Diff. Eq. 104 (1993), 332-360.

Tsutaya K., Scattering theory for semilinear wave equations with small data in two space dimen-
sions, Trans. A.M.S. 342 (1994), 595-618.

Zhou Y., Cauchy problem for semilinear wave equations in four space dimensions with small tnitial
data, preprint.

H. Kubo and K. Kubota
Department of Mathematics
Faculty of Science

Hokkaido University
Sapporo 060, Japan



